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A generating operator of inequalities for polynomials
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Abstract

Let P (z) be a polynomial of degree n ≥ 1. In this paper we consider an operator B,
which carries a polynomial P (z) into

B[P (z)] := λ0P (z) + λ1(
nz

2
)
P ′(z)

1!
+ λ2(

nz

2
)2
P ′′(z)

2!
,

where λ0, λ1 and λ2 are such that all the zeros of

u(z) = λ0 + c(n, 1)λ1z + c(n, 2)λ2z
2

lie in half plane

|z| ≤ |z − n

2
|,

and obtain new generalizations of some well-known results.
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1 Introduction and statement of results

Let Pn be the class of polynomials of degree at most n then,

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|, (1.1)

and
max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|, R > 1. (1.2)

Inequality (1.1) is an immediate consequence of Bernstein’s theorem on the derivative of a
polynomial (see[5]). Inequality (1.2) is a simple deduction from the maximum modulus principle
(see[12]). If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then
the inequalities (1.1) and (1.2) can be respectively replaced by following [9,1]

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|, (1.3)
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and

max
|z|=R

|P (z)| ≤ Rn + 1

2
max
|z|=1

|P (z)|, R > 1. (1.4)

Recently Aziz and Rather [3] have investigated the dependence of∣∣∣∣P (Rz)− αP (z) + β

{(
R+ 1

2

)n
− |α|

}
P (z)

∣∣∣∣ for|z| = 1on max
|z|=1

|P (z)|

for every complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R ≥ 1. In fact, they proved

Theorem A If P(z) is a polynomial of degree n, then for every complex numbers α, β with
|α| ≤ 1, |β| ≤ 1 and R ≥ 1,∣∣∣∣P (Rz)− αP (z) + β

{(
R+ 1

2

)n
− |α|

}
P (z)

∣∣∣∣
≤

∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |z|n max
|z|=1

|P (z)|, for |z| ≥ 1 (1.5)

and ∣∣∣∣P (Rz)− αP (z) + β

{(
R+ 1

2

)n
− |α|

}
P (z)

∣∣∣∣
+

∣∣∣∣Q(Rz)− αQ(z) + β

{(
R+ 1

2

)n
− |α|

}
Q(z)

∣∣∣∣
≤

[∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |z|n
+

∣∣∣∣1− α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣]max
|z|=1

|P (z)|, (1.6)

for |z| ≥ 1, where Q(z) = znP ( 1
z̄ ). The results are sharp and equalities in (1.5) and (1.6) holds

for P (z) = λzn, λ 6= 0. For the class of polynomial having no zeros in |z| < 1, we have the
following result due to Aziz and Rather which is a generalization of inequality (1.4).

Theorem B If P (z) is a polynomial of degree n which does not vanish in |z| < 1, then for
every complex numbers α, β with |α| ≤ 1 , |β| ≤ 1 and R ≥ 1,∣∣∣∣P (Rz)− αP (z) + β

{(
R+ 1

2

)n
− |α|

}
P (z)

∣∣∣∣
≤ 1

2

[∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |z|n
+

∣∣∣∣1− α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣]max
|z|=1

|P (z), (1.7)
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for |z| > 1. Equality in (1.7) occurs for P (z) = zn + 1.
In this paper, we consider an operator B, which carries P ∈ Pn in to

B[P (z)] := λ0P (z) + λ1(
nz

2
)
P ′(z)

1!
+ λ2(

nz

2
)2P

′′(z)

2!
, (1.8)

where λ0, λ1 and λ2 are such that all the zeros of

u(z) = λ0 + c(n, 1)λ1z + c(n, 2)λ2z
2 (1.9)

lie in the half plane

|z| ≤ |z − n

2
|, (1.10)

and prove the following generalization of Theorems A and B thus as well of inequalities (1.1)
and (1.2).

Theorem 1. If P (z) is a polynomial of degree n, then for every complex numbers α, β with
|α| ≤ 1 , |β| ≤ 1 and R ≥ 1,∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣(Rn − α) + β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |B[zn]|max
|z|=1

|P (z)|, for |z| ≥ 1. (1.11)

Equality holds in (1.11) for P (z) = λzn, λ 6= 0.

Remark 1. For λ0 = λ2 = 0 in (1.11) and note that in this case all the zeros of u(z) defined
by (1.9) lie in (1.10), we get∣∣∣∣RP ′(Rz)− αP ′(z) + β

{(
R+ 1

2

)n
− |α|

}
P ′(z)

∣∣∣∣
≤ n

∣∣∣∣(Rn − α) + β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |z|n−1 max
|z|=1

|P (z)|, for |z| ≥ 1. (1.12)

Equality holds in (1.12) for P (z) = λzn, λ 6= 0. If we take β = 0 , α = 1 and dividing the both
sides of (1.12) by R− 1 and then allowing R→ 1, we get

|zP ′′(z) + P ′(z)| ≤ n2|z|n−1 max
|z|=1

|P (z)|, for |z| ≥ 1. (1.13)

Equality holds in (1.13) for P (z) = λzn, λ 6= 0. For α = β = 0 and R = 1, inequality (1.12)
gives

|P ′(z)| ≤ n|z|n−1 max
|z|=1

|P (z)|, for |z| ≥ 1. (1.14)

which in particular gives inequality (1.1).
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Remark 2. For λ1 = λ2 = 0. Theorem 1 reduces to inequality (1.5). Next as an application
of Theorem 1, we prove the following theorem which is a generalization of a results prove by
Rahman [11] , Jain [6], Aziz and Rather [3].

Theorem 2. If P (z) is a polynomial of degree n, then for every complex numbers α, β with
|α| ≤ 1 , |β| ≤ 1 and R ≥ 1,

∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
+

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣
≤

[∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |B[zn]|

+

∣∣∣∣1− α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |λ0|
]

max
|z|=1

|P (z)|, (1.15)

for |z| ≥ 1, where Q(z) =n P ( 1
z̄ ). If we take λ0 = λ2 = β = 0 and α = 1 in (1.15), we obtain

the following result.

Corollary 1. If P (z) is a polynomial of degree n, then for every complex number α with
|α| ≤ 1 and R ≥ 1,

|RP ′(Rz)− P ′(z)|+ |RQ′(Rz)−Q′(z)|
≤ n(Rn − 1)|z|n−1 max

|z|=1
|P (z)|, for |z| ≥ 1. (1.16)

Equality holds in (1.16) for P (z) = λzn, λ 6= 0.If P (z) is a polynomial of degree n, then for
every complex number α with |α| ≤ 1 and R ≥ 1,

|RP ′(Rz)− P ′(z)|+ |RQ′(Rz)−Q′(z)|
≤ n(Rn − 1)|z|n−1 max

|z|=1
|P (z)|, for |z| ≥ 1. (1.16)

Equality holds in (1.16) for P (z) = λzn, λ 6= 0. Theorem 2 includes a result due to Rahman
[11] as a special case for λ1 = λ2 = α = β = 0, where as inequality (1.15) reduces to a result
due to Jain [6,Theorem 1] for λ1 = λ2 = α = 0. For λ1 = λ2 = 0, inequality (1.15) reduces to
inequality (1.6).
Lastly, for class of polynomial having no zeros in |z| < 1, we prove the following generalization
of Theorem B.
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Theorem 3. If P (z) is a polynomial of degree n which does not vanish in |z| < 1, then for
every complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R ≥ 1,∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤ 1

2

[∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |B[zn]|

+

∣∣∣∣1− α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |λ0|
]

max
|z|=1

|P (z)|, for |z| ≥ 1. (1.17)

Equality holds in (1.17) for P (z) = zn + 1. If we take α = β = 0 in Theorem 3, we get the
following result.

Corollary 2. If P (z) is a polynomial of degree n which does not vanish in |z| < 1, then for
R ≥ 1,

|B[P (Rz)]| ≤ 1

2
{Rn|B[zn]|+ |λ0|}max

|z|=1
|P (z)|, for |z| ≥ 1. (1.18)

The result is sharp and equality holds for P (z) = zn + 1. For R = 1, inequality (1.18) reduces
to a results due to Shah and Liman [13].

Remark 3. Theorem 3 includes some well-known inequalities as special case. For example
inequality (1.17) reduces to a result due to Aziz and Rather [4] for λ1 = λ2 = β = 0. For
λ1 = λ2 = α = 0 inequality (1.17) reduces to result due to Jain [7] where as for λ1 = λ2 = 0
inequality (1.18) reduces to

|P (Rz)| ≤ 1

2
{Rn + 1}max

|z|=1
|P (z)| R ≥ 1.

If we take λ0 = λ2 = α = β = 0, inequality (1.17) reduces to inequality (1.3).

2 Lemmas

For the proofs of the theorems, we need the following lemmas. The first lemma was proved by
Aziz [2].

Lemma 1 If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k(k ≤ 1), then for every R > 1,

|P (Rz)| ≥
(
R+ k

1 + k

)n
|P (z)|, for |z| = 1. (2.1)

The following lemma follows from corollary 18.3 of [10].
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Lemma 2 If all the zeros of a polynomial P (z) of degree n lie in a circle |z| ≤ 1, then all the
zeros of the polynomial B[P (z)] also lie in the circle |z| ≤ 1.

Lemma 3. If P (z) is a polynomial of degree n such that P (z) 6= 0, in |z| < 1, then

|B[P (z)]| ≤ |B[Q(z)]|, for |z| ≥ 1, (2.2)

where Q(z) = znP ( 1
z̄ ).

Lemma 4 If P (z) is a polynomial of degree n, then for |z| ≥ 1,

|B[P (z)]|+ |B[Q(z)]| ≤ {|B[zn]|+ |λ0|}max
|z|=1

|P (z)|, (2.3)

where Q(z) = znP ( 1
z̄ ).

The above two lemmas are due to Shah and Liman [13].

Lemma 5 If P (z) is a polynomial of degree n which does not vanish in |z| < 1, then for every
complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R ≥ 1,∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣ , (2.4)

for |z| ≥ 1, where Q(z) = znP ( 1
z̄ ).

Proof. If P (z) 6= 0 in |z| < 1, then by Lemma 3 we have |B[P (z)]| ≤ |B[Q(z)]| for |z| ≥ 1
and hence for R = 1, we have nothing to prove . For R > 1, since |P (z)| = |Q(z)| for |z| = 1,
it follows by Rouche’s theorem that for every complex number λ with |λ| > 1, the polynomial
T (z) = P (z) − λQ(z) does not vanish in |z| > 1, with at least one zero in |z| < 1. Let
T (z) = (z− reiδ)F (z) where r < 1 and F (z) is a polynomial of degree n− 1 having no zeros in
|z| > 1. Applying Lemma 1 with k = 1, for every R > 1, 0 ≤ θ ≤ 2π

|T (Reiθ)| ≥ |Reiθ − reiδ|
(
R+ 1

2

)n−1

|F (eiθ)|

=

(
R+ 1

2

)n−1 ∣∣∣∣Reiθ − reiδeiθ − reiδ

∣∣∣∣ |(eiθ − reiδ)F (eiθ)|

≥
(
R+ 1

2

)n−1 (
R+ r

1 + r

)
|T (eiθ)|,

or (
r + 1

R+ r

)
|T (Reiθ)| ≥

(
R+ 1

2

)n−1

|T (eiθ)|, R > 1 and 0 ≤ θ ≤ 2π, (2.5)
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since R > 1 > r, hence T (Reiθ) 6= 0 and ( 2
R+1 ) > ( r+1

R+r ), from inequality (2.5), we have

|T (Rz)| >
(
R+ 1

2

)n
|T (z)|, |z| = 1 , R > 1. (2.6)

Hence for every complex number α with |α| ≤ 1, we have

|T (Rz)− αT (z)| ≥ |T (Rz)| − |α||T (z)|

>

{(
R+ 1

2

)n
− |α|

}
|T (z)|, for |z| = 1 and R > 1. (2.7)

Since T (Reiθ) 6= 0 and (R+1
2 )n > 1, hance from inequality (2.6), we have

|T (Reiθ)| > (|T (eiθ)|, for R > 1 and 0 ≤ θ ≤ 2π,

equivalently
|T (Rz)| > (|T (z)|, for |z| = 1 and R > 1.

Since all the zeros of T (Rz) lie in |z| < 1, it follows (by Rouche’s theorem for |α| ≤ 1) that the
polynomial T (Rz)−αT (z) does not vanish in |z| ≥ 1. Hence from inequality (2.7)(by Rouche’s
theorem for |β| ≤ 1), we have the polynomial

S(z) = T (Rz)− αT (z) + β

{(
R+ 1

2

)n
− |α|

}
T (z),

has all its zeros in |z| < 1. Therefore, by Lemma 2, all the zeros of B[S(z)] lie in |z| < 1.
Replacing T (z) by P (z)− λQ(z) and since B is liner, it follows that the polynomial

B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

− λ
{
B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

}
having no zeros in |z| ≥ 1. This implies∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣ , (2.8)

for |z| ≥ 1. If this is not true, then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣B[P (Rz0)]− αB[P (z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z0)]

∣∣∣∣
>

∣∣∣∣B[Q(Rz0)]− αB[Q(z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z0)]

∣∣∣∣ .
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Since all the zeros of Q(z) lie in |z| ≤ 1, hence (As in case of T (z)) all the zeros of

B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)] lie in|z| < 1,

for every complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > 1. Therefore

B[Q(Rz0)]− αB[Q(z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z0)] 6= 0 with |z0| ≥ 1,

we take

λ =

B[P (Rz0)]− αB[P (z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z0)]

B[Q(Rz0)]− αB[Q(z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z0)]

so that |λ| > 1 and for this value λ, B[S(z0)] = 0 for |z0| ≥ 1, which contradicts the fact that
all the zeros of B[S(z)] lie in |z| < 1. This proves the desired result.

3 Proofs of the theorems

Proof of Theorem 1. For R = 1, it is already proved by Rahman [11].We assume R > 1.
On Lemma 1, if we take k = 1 and P (z) 6= 0 in |z| ≥ 1 ,then one can easily obtain

|P1(Rz)| >
(
R+ 1

2

)n
|P1(z)|, |z| = 1 and R > 1. (3.1)

Since P1(Reiθ) 6= 0, 0 ≤ θ < 2π and (R+1
2 )n > 1 from above inequality we have |P1(Reiθ)| >

|P1(eiθ)|, R > 1.
Equivalently,

|P1(Rz)| > |P1(z)|, for |z| = 1 and R > 1.

For every complex number α with |α| ≤ 1 and using inequality (3.1), we have

|P1(Rz)− αP1(z)| ≥ |P1(Rz)| − |α||P1(z)|

>

{(
R+ 1

2

)n
− |α|

}
|P1(z)|, for |z| = 1 and R > 1.(3.2)

Since all the zeros of P1(Rz) lie in |z| < 1, it follows (by Rouche’s theorem for |α| ≤ 1) that
the polynomial P1(Rz) − αP1(z) has all its zeros in |z| < 1. Hence from inequality (3.2)(by
Rouche’s theorem for |β| ≤ 1), we have the polynomial

F (z) = P1(Rz)− αP1(z) + β

{(
R+ 1

2

)n
− |α|

}
P1(z),
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has all its zeros in |z| < 1. So, by Lemma 2, all the zeros of B[F (z)] lie in |z| < 1. Replacing
P1(z) by P (z)− λMzn and since B is liner, it follows that the polynomial

B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

− λMB[zn]

{
Rn − α+ β

{(
R+ 1

2

)n
− |α|

}}
having no zeros in |z| ≥ 1. This implies∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |B[zn]|M,

for |z| ≥ 1. If this is not true, then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣B[P (Rz0)]− αB[P (z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z0)]

∣∣∣∣
>

∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |B[zn0 ]|M.

Since all the zeros of Mzn lie in |z| < 1, hence (As in case of F (z)) all the zeros of{
Rn − α+ β

{(
R+ 1

2

)n
− |α|

}}
MB[zn]

lie in |z| < 1. We take

λ =

B[P (Rz0)]− αB[P (z0)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z0)]{

Rn − α+ β

{(
R+ 1

2

)n
− |α|

}}
B[zn0 ]M

so that |λ| > 1 and for this value λ, B[F (z0)] = 0 for |z0| ≥ 1, which contradicts the fact that
all the zeros of B[F (z)] lie in |z| < 1. This proves the Theorem 1.

Proof of Theorem 2. The result is trivial if (R = 1) (Lemma 4), so we suppose that R > 1.
If M = max

|z|=1
|P (z)|, then |P (z)| ≤M for |z| = 1. Now for every complex number λ with |λ| > 1,

we have the polynomial W (z) = P (z) + λM has no zeros in |z| < 1 and on applying Lemma 5,
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we get for |z| ≥ 1 and R > 1,∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

+ λ

[
1− α+ β

{(
R+ 1

2

)n
− |α|

}]
λ0M

∣∣∣∣
≤

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

+λ̄

[
Rn − α+ β

{(
R+ 1

2

)n
− |α|

}]
B[zn]M

∣∣∣∣ (3.3)

where |α| ≤ 1 , |β| ≤ 1 and Q(z) = znP ( 1
z̄ ). Choosing the argument of λ, which is possible by

(1.11) such that∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

+ λ̄

[
Rn − α+ β

{(
R+ 1

2

)n
− |α|

}]
MB[zn]

∣∣∣∣
= |λ|

∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣M |B[zn]|

−
∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣ ,
we get from (3.3)∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
− |λ||λ0|

∣∣∣∣1− α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣M
≤ |λ|

∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣M |B[zn]|

−
∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣ , (3.4)

for |z| ≥ 1, |α| ≤ 1, |β| ≤ 1, and R > 1, making |λ| → 1 in (3.4), we get (1.15). This completes
the proof of Theorem 2.

Proof of Theorem 3. By hypothesis P (z) does not vanish in |z| < 1, therefore by Lemma
5 we have ∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣ ,
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for |z| ≥ 1 where Q(z) = znP ( 1
z̄ ).

Equavalently

2

∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
+

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣ , (3.5)

on applying Theorem 2, we get

2

∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
≤

∣∣∣∣B[P (Rz)]− αB[P (z)] + β

{(
R+ 1

2

)n
− |α|

}
B[P (z)]

∣∣∣∣
+

∣∣∣∣B[Q(Rz)]− αB[Q(z)] + β

{(
R+ 1

2

)n
− |α|

}
B[Q(z)]

∣∣∣∣
≤

[∣∣∣∣Rn − α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |B[zn]|

+

∣∣∣∣1− α+ β

{(
R+ 1

2

)n
− |α|

}∣∣∣∣ |λ0|
]

max
|z|=1

|P (z)|,

which is inequality (1.17) and this completes proof of Theorem 3.
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