# A generating operator of inequalities for polynomials 

by

M.Ahmadi Baseri, M. Bidkham and Madjid Eshaghi


#### Abstract

Let $P(z)$ be a polynomial of degree $n \geq 1$. In this paper we consider an operator $B$, which carries a polynomial $P(z)$ into


$$
B[P(z)]:=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!}
$$

where $\lambda_{0}, \lambda_{1}$ and $\lambda_{2}$ are such that all the zeros of

$$
u(z)=\lambda_{0}+c(n, 1) \lambda_{1} z+c(n, 2) \lambda_{2} z^{2}
$$

lie in half plane

$$
|z| \leq\left|z-\frac{n}{2}\right|
$$

and obtain new generalizations of some well-known results.
Key Words: Polynomials, B operator, inequalities in the complex domain.
2010 Mathematics Subject Classification: Primary 30A06, Secondary 30A64.

## 1 Introduction and statement of results

Let $P_{n}$ be the class of polynomials of degree at most $n$ then,

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)|, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)|, \quad R>1 \tag{1.2}
\end{equation*}
$$

Inequality (1.1) is an immediate consequence of Bernstein's theorem on the derivative of a polynomial (see[5]). Inequality (1.2) is a simple deduction from the maximum modulus principle (see[12]). If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then the inequalities (1.1) and (1.2) can be respectively replaced by following [9,1]

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)|, \quad R>1 . \tag{1.4}
\end{equation*}
$$

Recently Aziz and Rather [3] have investigated the dependence of

$$
\left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \text { for }|z|=1 \text { on } \max _{|z|=1}|P(z)|
$$

for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$. In fact, they proved
Theorem A If $P(z)$ is a polynomial of degree $n$, then for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \\
& \leq\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n} \max _{|z|=1}^{n}|P(z)|, \text { for }|z| \geq 1 \tag{1.5}
\end{align*}
$$

and

$$
\begin{align*}
& \left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \\
& +\left|Q(R z)-\alpha Q(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} Q(z)\right| \\
& \leq\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n}\right. \\
& \left.+\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\right]\left|\max _{|z|=1}\right| P(z) \mid, \tag{1.6}
\end{align*}
$$

for $|z| \geq 1$, where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$. The results are sharp and equalities in (1.5) and (1.6) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$. For the class of polynomial having no zeros in $|z|<1$, we have the following result due to Aziz and Rather which is a generalization of inequality (1.4).

Theorem B If $P(z)$ is a polynomial of degree $n$ which does not vanish in $|z|<1$, then for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \left|P(R z)-\alpha P(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P(z)\right| \\
& \leq \frac{1}{2}\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n}\right. \\
& \left.+\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\right] \max _{|z|=1} \mid P(z), \tag{1.7}
\end{align*}
$$

for $|z|>1$. Equality in (1.7) occurs for $P(z)=z^{n}+1$.
In this paper, we consider an operator B , which carries $P \in P_{n}$ in to

$$
\begin{equation*}
B[P(z)]:=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{1.8}
\end{equation*}
$$

where $\lambda_{0}, \lambda_{1}$ and $\lambda_{2}$ are such that all the zeros of

$$
\begin{equation*}
u(z)=\lambda_{0}+c(n, 1) \lambda_{1} z+c(n, 2) \lambda_{2} z^{2} \tag{1.9}
\end{equation*}
$$

lie in the half plane

$$
\begin{equation*}
|z| \leq\left|z-\frac{n}{2}\right| \tag{1.10}
\end{equation*}
$$

and prove the following generalization of Theorems A and B thus as well of inequalities (1.1) and (1.2).

Theorem 1. If $P(z)$ is a polynomial of degree $n$, then for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \quad \leq\left|\left(R^{n}-\alpha\right)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|B\left[z^{n}\right]\right| \max _{|z|=1}|P(z)|, \text { for }|z| \geq 1 \tag{1.11}
\end{align*}
$$

Equality holds in (1.11) for $P(z)=\lambda z^{n}, \lambda \neq 0$.
Remark 1. For $\lambda_{0}=\lambda_{2}=0$ in (1.11) and note that in this case all the zeros of $u(z)$ defined by (1.9) lie in (1.10), we get

$$
\begin{align*}
& \left|R P^{\prime}(R z)-\alpha P^{\prime}(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P^{\prime}(z)\right| \\
& \quad \leq n\left|\left(R^{n}-\alpha\right)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right||z|^{n-1} \max _{|z|=1}|P(z)|, \text { for }|z| \geq 1 \tag{1.12}
\end{align*}
$$

Equality holds in (1.12) for $P(z)=\lambda z^{n}, \lambda \neq 0$. If we take $\beta=0, \alpha=1$ and dividing the both sides of (1.12) by $R-1$ and then allowing $R \rightarrow 1$, we get

$$
\begin{equation*}
\left|z P^{\prime \prime}(z)+P^{\prime}(z)\right| \leq n^{2}|z|^{n-1} \max _{|z|=1}|P(z)|, \quad \text { for }|z| \geq 1 \tag{1.13}
\end{equation*}
$$

Equality holds in (1.13) for $P(z)=\lambda z^{n}, \lambda \neq 0$. For $\alpha=\beta=0$ and $R=1$, inequality (1.12) gives

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leq n|z|^{n-1} \max _{|z|=1}|P(z)|, \quad \text { for } \quad|z| \geq 1 \tag{1.14}
\end{equation*}
$$

which in particular gives inequality (1.1).

Remark 2. For $\lambda_{1}=\lambda_{2}=0$. Theorem 1 reduces to inequality (1.5). Next as an application of Theorem 1, we prove the following theorem which is a generalization of a results prove by Rahman [11], Jain [6], Aziz and Rather [3].

Theorem 2. If $P(z)$ is a polynomial of degree $n$, then for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& +\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right| \\
& \leq\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.+\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|\lambda_{0}\right|\right] \max _{|z|=1}|P(z)|, \tag{1.15}
\end{align*}
$$

for $|z| \geq 1$, where $\left.Q(z)={ }^{n} \overline{P\left(\frac{1}{\bar{z}}\right.}\right)$. If we take $\lambda_{0}=\lambda_{2}=\beta=0$ and $\alpha=1$ in (1.15), we obtain the following result.

Corollary 1. If $P(z)$ is a polynomial of degree $n$, then for every complex number $\alpha$ with $|\alpha| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
\mid R P^{\prime}(R z) & -P^{\prime}(z)\left|+\left|R Q^{\prime}(R z)-Q^{\prime}(z)\right|\right. \\
& \leq n\left(R^{n}-1\right)|z|^{n-1} \max _{|z|=1}|P(z)|, \quad \text { for } \quad|z| \geq 1 . \tag{1.16}
\end{align*}
$$

Equality holds in (1.16) for $P(z)=\lambda z^{n}, \lambda \neq 0$.If $P(z)$ is a polynomial of degree $n$, then for every complex number $\alpha$ with $|\alpha| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
\mid R P^{\prime}(R z) & -P^{\prime}(z)\left|+\left|R Q^{\prime}(R z)-Q^{\prime}(z)\right|\right. \\
& \leq n\left(R^{n}-1\right)|z|^{n-1} \max _{|z|=1}|P(z)|, \quad \text { for } \quad|z| \geq 1 \tag{1.16}
\end{align*}
$$

Equality holds in (1.16) for $P(z)=\lambda z^{n}, \lambda \neq 0$. Theorem 2 includes a result due to Rahman [11] as a special case for $\lambda_{1}=\lambda_{2}=\alpha=\beta=0$, where as inequality (1.15) reduces to a result due to Jain [6,Theorem 1] for $\lambda_{1}=\lambda_{2}=\alpha=0$. For $\lambda_{1}=\lambda_{2}=0$, inequality (1.15) reduces to inequality (1.6).
Lastly, for class of polynomial having no zeros in $|z|<1$, we prove the following generalization of Theorem B.

Theorem 3. If $P(z)$ is a polynomial of degree $n$ which does not vanish in $|z|<1$, then for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq \frac{1}{2}\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.+\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|\lambda_{0}\right|\right] \max _{|z|=1}|P(z)|, \quad \text { for } \quad|z| \geq 1 \tag{1.17}
\end{align*}
$$

Equality holds in (1.17) for $P(z)=z^{n}+1$. If we take $\alpha=\beta=0$ in Theorem 3, we get the following result.

Corollary 2. If $P(z)$ is a polynomial of degree $n$ which does not vanish in $|z|<1$, then for $R \geq 1$,

$$
\begin{equation*}
|B[P(R z)]| \leq \frac{1}{2}\left\{R^{n}\left|B\left[z^{n}\right]\right|+\left|\lambda_{0}\right|\right\} \max _{|z|=1}|P(z)|, \quad \text { for } \quad|z| \geq 1 \tag{1.18}
\end{equation*}
$$

The result is sharp and equality holds for $P(z)=z^{n}+1$. For $R=1$, inequality (1.18) reduces to a results due to Shah and Liman [13].

Remark 3. Theorem 3 includes some well-known inequalities as special case. For example inequality (1.17) reduces to a result due to Aziz and Rather [4] for $\lambda_{1}=\lambda_{2}=\beta=0$. For $\lambda_{1}=\lambda_{2}=\alpha=0$ inequality (1.17) reduces to result due to Jain [7] where as for $\lambda_{1}=\lambda_{2}=0$ inequality (1.18) reduces to

$$
|P(R z)| \leq \frac{1}{2}\left\{R^{n}+1\right\} \max _{|z|=1}|P(z)| \quad R \geq 1
$$

If we take $\lambda_{0}=\lambda_{2}=\alpha=\beta=0$, inequality (1.17) reduces to inequality (1.3).

## 2 Lemmas

For the proofs of the theorems, we need the following lemmas. The first lemma was proved by Aziz [2].

Lemma 1 If $P(z)$ is a polynomial of degree $n$ having all its zeros in $|z| \leq k(k \leq 1)$, then for every $R>1$,

$$
\begin{equation*}
|P(R z)| \geq\left(\frac{R+k}{1+k}\right)^{n}|P(z)|, \quad \text { for } \quad|z|=1 \tag{2.1}
\end{equation*}
$$

The following lemma follows from corollary 18.3 of [10].

Lemma 2 If all the zeros of a polynomial $P(z)$ of degree $n$ lie in a circle $|z| \leq 1$, then all the zeros of the polynomial $B[P(z)]$ also lie in the circle $|z| \leq 1$.

Lemma 3. If $P(z)$ is a polynomial of degree $n$ such that $P(z) \neq 0$, in $|z|<1$, then

$$
\begin{equation*}
|B[P(z)]| \leq|B[Q(z)]|, \quad \text { for } \quad|z| \geq 1, \tag{2.2}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
Lemma 4 If $P(z)$ is a polynomial of degree $n$, then for $|z| \geq 1$,

$$
\begin{equation*}
|B[P(z)]|+|B[Q(z)]| \leq\left\{\left|B\left[z^{n}\right]\right|+\left|\lambda_{0}\right|\right\} \max _{|z|=1}|P(z)|, \tag{2.3}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
The above two lemmas are due to Shah and Liman [13].
Lemma 5 If $P(z)$ is a polynomial of degree $n$ which does not vanish in $|z|<1$, then for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R \geq 1$,

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right|, \tag{2.4}
\end{align*}
$$

for $|z| \geq 1$, where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
Proof. If $P(z) \neq 0$ in $|z|<1$, then by Lemma 3 we have $|B[P(z)]| \leq|B[Q(z)]|$ for $|z| \geq 1$ and hence for $R=1$, we have nothing to prove. For $R>1$, since $|P(z)|=|Q(z)|$ for $|z|=1$, it follows by Rouche's theorem that for every complex number $\lambda$ with $|\lambda|>1$, the polynomial $T(z)=P(z)-\lambda Q(z)$ does not vanish in $|z|>1$, with at least one zero in $|z|<1$. Let $T(z)=\left(z-r e^{i \delta}\right) F(z)$ where $r<1$ and $F(z)$ is a polynomial of degree $n-1$ having no zeros in $|z|>1$. Applying Lemma 1 with $k=1$, for every $R>1,0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
\left|T\left(R e^{i \theta}\right)\right| & \geq\left|R e^{i \theta}-r e^{i \delta}\right|\left(\frac{R+1}{2}\right)^{n-1}\left|F\left(e^{i \theta}\right)\right| \\
& =\left(\frac{R+1}{2}\right)^{n-1}\left|\frac{R e^{i \theta}-r e^{i \delta}}{e^{i \theta}-r e^{i \delta}}\right|\left|\left(e^{i \theta}-r e^{i \delta}\right) F\left(e^{i \theta}\right)\right| \\
& \geq\left(\frac{R+1}{2}\right)^{n-1}\left(\frac{R+r}{1+r}\right)\left|T\left(e^{i \theta}\right)\right|,
\end{aligned}
$$

or

$$
\begin{equation*}
\left(\frac{r+1}{R+r}\right)\left|T\left(R e^{i \theta}\right)\right| \geq\left(\frac{R+1}{2}\right)^{n-1}\left|T\left(e^{i \theta}\right)\right|, R>1 \quad \text { and } \quad 0 \leq \theta \leq 2 \pi \tag{2.5}
\end{equation*}
$$

since $R>1>r$, hence $T\left(R e^{i \theta}\right) \neq 0$ and $\left(\frac{2}{R+1}\right)>\left(\frac{r+1}{R+r}\right)$, from inequality (2.5), we have

$$
\begin{equation*}
|T(R z)|>\left(\frac{R+1}{2}\right)^{n}|T(z)|, \quad|z|=1, R>1 \tag{2.6}
\end{equation*}
$$

Hence for every complex number $\alpha$ with $|\alpha| \leq 1$, we have

$$
\begin{align*}
|T(R z)-\alpha T(z)| & \geq|T(R z)|-|\alpha||T(z)| \\
& >\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}|T(z)|, \quad \text { for }|z|=1 \text { and } R>1 \tag{2.7}
\end{align*}
$$

Since $T\left(R e^{i \theta}\right) \neq 0$ and $\left(\frac{R+1}{2}\right)^{n}>1$, hance from inequality (2.6), we have

$$
\left|T\left(R e^{i \theta}\right)\right|>\left(\left|T\left(e^{i \theta}\right)\right|, \quad \text { for } \quad R>1 \text { and } \quad 0 \leq \theta \leq 2 \pi\right.
$$

equivalently

$$
|T(R z)|>(|T(z)|, \quad \text { for } \quad|z|=1 \text { and } \quad R>1
$$

Since all the zeros of $T(R z)$ lie in $|z|<1$, it follows (by Rouche's theorem for $|\alpha| \leq 1$ ) that the polynomial $T(R z)-\alpha T(z)$ does not vanish in $|z| \geq 1$. Hence from inequality (2.7)(by Rouche's theorem for $|\beta| \leq 1$ ), we have the polynomial

$$
S(z)=T(R z)-\alpha T(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} T(z)
$$

has all its zeros in $|z|<1$. Therefore, by Lemma 2, all the zeros of $B[S(z)]$ lie in $|z|<1$. Replacing $T(z)$ by $P(z)-\lambda Q(z)$ and since B is liner, it follows that the polynomial

$$
\begin{aligned}
B[P(R z)] & -\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)] \\
& -\lambda\left\{B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right\}
\end{aligned}
$$

having no zeros in $|z| \geq 1$. This implies

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right| \tag{2.8}
\end{align*}
$$

for $|z| \geq 1$. If this is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$, such that

$$
\begin{aligned}
& \left|B\left[P\left(R z_{0}\right)\right]-\alpha B\left[P\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[P\left(z_{0}\right)\right]\right| \\
& >\left|B\left[Q\left(R z_{0}\right)\right]-\alpha B\left[Q\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[Q\left(z_{0}\right)\right]\right|
\end{aligned}
$$

Since all the zeros of $Q(z)$ lie in $|z| \leq 1$, hence (As in case of $T(z)$ ) all the zeros of

$$
B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)] \quad \text { lie in }|z|<1
$$

for every complex numbers $\alpha, \beta$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>1$. Therefore

$$
B\left[Q\left(R z_{0}\right)\right]-\alpha B\left[Q\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[Q\left(z_{0}\right)\right] \neq 0 \quad \text { with } \quad\left|z_{0}\right| \geq 1
$$

we take

$$
\lambda=\frac{B\left[P\left(R z_{0}\right)\right]-\alpha B\left[P\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[P\left(z_{0}\right)\right]}{B\left[Q\left(R z_{0}\right)\right]-\alpha B\left[Q\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[Q\left(z_{0}\right)\right]}
$$

so that $|\lambda|>1$ and for this value $\lambda, B\left[S\left(z_{0}\right)\right]=0$ for $\left|z_{0}\right| \geq 1$, which contradicts the fact that all the zeros of $B[S(z)]$ lie in $|z|<1$. This proves the desired result.

## 3 Proofs of the theorems

Proof of Theorem 1. For $R=1$, it is already proved by Rahman [11]. We assume $R>1$. On Lemma 1, if we take $k=1$ and $P(z) \neq 0$ in $|z| \geq 1$, then one can easily obtain

$$
\begin{equation*}
\left|P_{1}(R z)\right|>\left(\frac{R+1}{2}\right)^{n}\left|P_{1}(z)\right|, \quad|z|=1 \text { and } R>1 . \tag{3.1}
\end{equation*}
$$

Since $P_{1}\left(R e^{i \theta}\right) \neq 0,0 \leq \theta<2 \pi$ and $\left(\frac{R+1}{2}\right)^{n}>1$ from above inequality we have $\left|P_{1}\left(R e^{i \theta}\right)\right|>$ $\left|P_{1}\left(e^{i \theta}\right)\right|, R>1$.
Equivalently,

$$
\left|P_{1}(R z)\right|>\left|P_{1}(z)\right|, \quad \text { for }|z|=1 \text { and } R>1 .
$$

For every complex number $\alpha$ with $|\alpha| \leq 1$ and using inequality (3.1), we have

$$
\begin{align*}
\left|P_{1}(R z)-\alpha P_{1}(z)\right| & \geq\left|P_{1}(R z)\right|-|\alpha|\left|P_{1}(z)\right| \\
& >\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\left|P_{1}(z)\right|, \quad \text { for }|z|=1 \text { and } R>1 \tag{3.2}
\end{align*}
$$

Since all the zeros of $P_{1}(R z)$ lie in $|z|<1$, it follows (by Rouche's theorem for $|\alpha| \leq 1$ ) that the polynomial $P_{1}(R z)-\alpha P_{1}(z)$ has all its zeros in $|z|<1$. Hence from inequality (3.2)(by Rouche's theorem for $|\beta| \leq 1$ ), we have the polynomial

$$
F(z)=P_{1}(R z)-\alpha P_{1}(z)+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} P_{1}(z)
$$

has all its zeros in $|z|<1$. So, by Lemma 2, all the zeros of $B[F(z)]$ lie in $|z|<1$. Replacing $P_{1}(z)$ by $P(z)-\lambda M z^{n}$ and since B is liner, it follows that the polynomial

$$
\begin{aligned}
B[P(R z)]-\alpha B & {[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)] } \\
& -\lambda M B\left[z^{n}\right]\left\{R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right\}
\end{aligned}
$$

having no zeros in $|z| \geq 1$. This implies

$$
\begin{aligned}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|B\left[z^{n}\right]\right| M
\end{aligned}
$$

for $|z| \geq 1$. If this is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$, such that

$$
\begin{aligned}
& \left|B\left[P\left(R z_{0}\right)\right]-\alpha B\left[P\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[P\left(z_{0}\right)\right]\right| \\
& >\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|B\left[z_{0}^{n}\right]\right| M .
\end{aligned}
$$

Since all the zeros of $M z^{n}$ lie in $|z|<1$, hence (As in case of $F(z)$ ) all the zeros of

$$
\left\{R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right\} M B\left[z^{n}\right]
$$

lie in $|z|<1$. We take

$$
\lambda=\frac{B\left[P\left(R z_{0}\right)\right]-\alpha B\left[P\left(z_{0}\right)\right]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B\left[P\left(z_{0}\right)\right]}{\left\{R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right\} B\left[z_{0}^{n}\right] M}
$$

so that $|\lambda|>1$ and for this value $\lambda, B\left[F\left(z_{0}\right)\right]=0$ for $\left|z_{0}\right| \geq 1$, which contradicts the fact that all the zeros of $B[F(z)]$ lie in $|z|<1$. This proves the Theorem 1.

Proof of Theorem 2. The result is trivial if $(R=1)$ (Lemma 4), so we suppose that $R>1$. If $M=\max _{|z|=1}|P(z)|$, then $|P(z)| \leq M$ for $|z|=1$. Now for every complex number $\lambda$ with $|\lambda|>1$, we have the polynomial $W(z)=P(z)+\lambda M$ has no zeros in $|z|<1$ and on applying Lemma 5 ,
we get for $|z| \geq 1$ and $R>1$,

$$
\begin{align*}
& \left\lvert\, B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right. \\
& \left.+\lambda\left[1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right] \lambda_{0} M \right\rvert\, \\
& \leq \left\lvert\, B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right. \\
& \left.+\bar{\lambda}\left[R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right] B\left[z^{n}\right] M \right\rvert\, \tag{3.3}
\end{align*}
$$

where $|\alpha| \leq 1,|\beta| \leq 1$ and $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$. Choosing the argument of $\lambda$, which is possible by (1.11) such that

$$
\begin{aligned}
& \left\lvert\, B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right. \\
& \left.\quad+\bar{\lambda}\left[R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right] M B\left[z^{n}\right] \right\rvert\, \\
& \quad=|\lambda|\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right| M\left|B\left[z^{n}\right]\right| \\
& \quad-\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right|
\end{aligned}
$$

we get from (3.3)

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& -|\lambda|\left|\lambda_{0}\right|\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right| M \\
& \leq|\lambda|\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right| M\left|B\left[z^{n}\right]\right| \\
& -\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right| \tag{3.4}
\end{align*}
$$

for $|z| \geq 1,|\alpha| \leq 1,|\beta| \leq 1$, and $R>1$, making $|\lambda| \rightarrow 1$ in (3.4), we get (1.15). This completes the proof of Theorem 2 .

Proof of Theorem 3. By hypothesis $P(z)$ does not vanish in $|z|<1$, therefore by Lemma 5 we have

$$
\begin{aligned}
& \left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right|
\end{aligned}
$$

for $|z| \geq 1$ where $Q(z)=z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$.
Equavalently

$$
\begin{align*}
& 2\left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq\left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& +\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right| \tag{3.5}
\end{align*}
$$

on applying Theorem 2, we get

$$
\begin{aligned}
& 2\left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& \leq\left|B[P(R z)]-\alpha B[P(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[P(z)]\right| \\
& +\left|B[Q(R z)]-\alpha B[Q(z)]+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\} B[Q(z)]\right| \\
& \leq\left[\left|R^{n}-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.+\left|1-\alpha+\beta\left\{\left(\frac{R+1}{2}\right)^{n}-|\alpha|\right\}\right|\left|\lambda_{0}\right|\right] \max _{|z|=1}|P(z)|
\end{aligned}
$$

which is inequality (1.17) and this completes proof of Theorem 3.

Primit 25.07.2009 Revised: 02.09.2010 Accepted: 02.12.2011

## References

[1] N. C. Ankeny, T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math, 5(1955), 849-852.
[2] A. AzIz, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc, 35(1987) 247-256.
[3] A. Aziz, N. A. Rather, Some compact generalization of Bernstein- type inequalities for polynomials, Math. Inequal Appl, 7(2004),no.3, 393-403.
[4] A. Aziz, N. A. Rather, On an inequalities for S. Bernstein and Gauss-Lucas theorem, analytic and geometric inequalities and their applications, (Th. M. Rassias and H. M. Sarivastava eds), Kluwer Acad. Pub.
[5] S. Bernstein, Sur la limitation des derivees des polnomes, C. R. Acad. Sci. Paris, 190(1930), 338-341.
[6] V. K. Jain, On maximum modulus of polynomials, Indian J. Pure Appl. Math, 23(11)(1992), 815-819.
[7] V. K. Jain, Generalization of certain well-know inequalities for polynomials, Glasnik Matematicki, 32(52)(1997), 45-51.
[8] V. K. Jain, Inequalities for a polynomials and its derivative, Proc. Indian Acad. Sci, 110(2000), no 2, 137-146.
[9] P. D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S), 50(1944), 509-513.
[10] M. Marden, Geometry of polynomials, Math. Surveys, Amer. Math. Soc. Providence. RI, 1949.
[11] Q. I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc, 135(1969), 295309.
[12] G. Polya, G. Szego, Problems and theorems in analysis(New york: Springer-Verlag), 1(1972).
[13] W. M. Shah, A. Liman, An operator preserving inequalities between polynomials, J. Inequal. Pure and Appl. Math, Volume 9(2008), Issue1, Article 25, 8pp.

Received: 25.07.2009,
Revised: 02.09.2010,
Accepted: 02.12.2011.
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran E-mails: m_ahmadi_baseri@yahoo.com mbidkham@semnan.ac.ir madjid.eshaghi@gmail.com

