Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 2, 2013, 151–162

A generating operator of inequalities for polynomials

by

M.Ahmadi Baseri, M. Bidkham and Madjid Eshaghi

Abstract

Let P(z) be a polynomial of degree $n \ge 1$. In this paper we consider an operator B, which carries a polynomial P(z) into

$$B[P(z)] := \lambda_0 P(z) + \lambda_1(\frac{nz}{2}) \frac{P'(z)}{1!} + \lambda_2(\frac{nz}{2})^2 \frac{P''(z)}{2!},$$

where λ_0, λ_1 and λ_2 are such that all the zeros of

$$u(z) = \lambda_0 + c(n,1)\lambda_1 z + c(n,2)\lambda_2 z^2$$

lie in half plane

$$|z| \le |z - \frac{n}{2}|,$$

and obtain new generalizations of some well-known results.

Key Words: Polynomials, B operator, inequalities in the complex domain.2010 Mathematics Subject Classification: Primary 30A06, Secondary 30A64.

1 Introduction and statement of results

Let P_n be the class of polynomials of degree at most n then,

$$\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|, \tag{1.1}$$

and

$$\max_{z|=R} |P(z)| \le R^n \max_{|z|=1} |P(z)|, \quad R > 1.$$
(1.2)

Inequality (1.1) is an immediate consequence of Bernstein's theorem on the derivative of a polynomial (see[5]). Inequality (1.2) is a simple deduction from the maximum modulus principle (see[12]). If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then the inequalities (1.1) and (1.2) can be respectively replaced by following [9,1]

$$\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)|, \tag{1.3}$$

and

152

$$\max_{|z|=R} |P(z)| \le \frac{R^n + 1}{2} \max_{|z|=1} |P(z)|, \quad R > 1.$$
(1.4)

Recently Aziz and Rather [3] have investigated the dependence of

$$\left|P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} P(z) \right| for |z| = 1 on \max_{|z|=1} |P(z)|$$

for every complex numbers α, β with $|\alpha| \leq 1, |\beta| \leq 1$ and $R \geq 1$. In fact, they proved

Theorem A If P(z) is a polynomial of degree n, then for every complex numbers α, β with $|\alpha| \leq 1, |\beta| \leq 1$ and $R \geq 1$,

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right|$$

$$\leq \left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n \max_{|z|=1} |P(z)|, \text{ for } |z| \ge 1$$
(1.5)

and

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right|$$

+ $\left| Q(Rz) - \alpha Q(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} Q(z) \right|$
$$\leq \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n$$

+ $\left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| \right] \max_{|z|=1} |P(z)|,$ (1.6)

for $|z| \ge 1$, where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$. The results are sharp and equalities in (1.5) and (1.6) holds for $P(z) = \lambda z^n$, $\lambda \ne 0$. For the class of polynomial having no zeros in |z| < 1, we have the following result due to Aziz and Rather which is a generalization of inequality (1.4).

Theorem B If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for every complex numbers α, β with $|\alpha| \le 1$, $|\beta| \le 1$ and $R \ge 1$,

$$\left| P(Rz) - \alpha P(z) + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} P(z) \right|$$

$$\leq \frac{1}{2} \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| |z|^n + \left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right| \right] \max_{|z|=1} |P(z), \qquad (1.7)$$

for |z| > 1. Equality in (1.7) occurs for $P(z) = z^n + 1$. In this paper, we consider an operator B, which carries $P \in P_n$ in to

$$B[P(z)] := \lambda_0 P(z) + \lambda_1 (\frac{nz}{2}) \frac{P'(z)}{1!} + \lambda_2 (\frac{nz}{2})^2 \frac{P''(z)}{2!}, \qquad (1.8)$$

where λ_0 , λ_1 and λ_2 are such that all the zeros of

$$u(z) = \lambda_0 + c(n,1)\lambda_1 z + c(n,2)\lambda_2 z^2$$
(1.9)

lie in the half plane

$$|z| \le |z - \frac{n}{2}|,\tag{1.10}$$

and prove the following generalization of Theorems A and B thus as well of inequalities (1.1) and (1.2).

Theorem 1. If P(z) is a polynomial of degree n, then for every complex numbers α, β with $|\alpha| \leq 1$, $|\beta| \leq 1$ and $R \geq 1$,

$$\left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$\leq \left| (R^n - \alpha) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |B[z^n]| \max_{|z|=1} |P(z)|, \text{ for } |z| \geq 1.$$
(1.11)

Equality holds in (1.11) for $P(z) = \lambda z^n, \lambda \neq 0$.

Remark 1. For $\lambda_0 = \lambda_2 = 0$ in (1.11) and note that in this case all the zeros of u(z) defined by (1.9) lie in (1.10), we get

$$\begin{aligned} \left| RP'(Rz) - \alpha P'(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} P'(z) \right| \\ &\leq n \left| (R^n - \alpha) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |z|^{n-1} \max_{|z|=1} |P(z)|, \ for \ |z| \ge 1. \ (1.12) \end{aligned}$$

Equality holds in (1.12) for $P(z) = \lambda z^n, \lambda \neq 0$. If we take $\beta = 0$, $\alpha = 1$ and dividing the both sides of (1.12) by R - 1 and then allowing $R \to 1$, we get

$$|zP''(z) + P'(z)| \le n^2 |z|^{n-1} \max_{|z|=1} |P(z)|, \quad for \ |z| \ge 1.$$
(1.13)

Equality holds in (1.13) for $P(z) = \lambda z^n, \lambda \neq 0$. For $\alpha = \beta = 0$ and R = 1, inequality (1.12) gives

$$|P'(z)| \le n|z|^{n-1} \max_{|z|=1} |P(z)|, \quad for \quad |z| \ge 1.$$
(1.14)

which in particular gives inequality (1.1).

153

Remark 2. For $\lambda_1 = \lambda_2 = 0$. Theorem 1 reduces to inequality (1.5). Next as an application of Theorem 1, we prove the following theorem which is a generalization of a results prove by Rahman [11], Jain [6], Aziz and Rather [3].

Theorem 2. If P(z) is a polynomial of degree n, then for every complex numbers α, β with $|\alpha| \leq 1$, $|\beta| \leq 1$ and $R \geq 1$,

$$\begin{aligned} \left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right| \\ + \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right| \\ \leq \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |B[z^n]| \\ + \left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |\lambda_0| \right] \max_{|z|=1} |P(z)|, \end{aligned}$$
(1.15)

for $|z| \ge 1$, where $Q(z) =^n \overline{P(\frac{1}{\overline{z}})}$. If we take $\lambda_0 = \lambda_2 = \beta = 0$ and $\alpha = 1$ in (1.15), we obtain the following result.

Corollary 1. If P(z) is a polynomial of degree n, then for every complex number α with $|\alpha| \leq 1$ and $R \geq 1$,

$$RP'(Rz) - P'(z)| + |RQ'(Rz) - Q'(z)|$$

$$\leq n(R^n - 1)|z|^{n-1} \max_{|z|=1} |P(z)|, \quad for \quad |z| \ge 1.$$
(1.16)

Equality holds in (1.16) for $P(z) = \lambda z^n, \lambda \neq 0$. If P(z) is a polynomial of degree n, then for every complex number α with $|\alpha| \leq 1$ and $R \geq 1$,

$$|RP'(Rz) - P'(z)| + |RQ'(Rz) - Q'(z)| \le n(R^n - 1)|z|^{n-1} \max_{|z|=1} |P(z)|, \quad for \quad |z| \ge 1.$$
(1.16)

Equality holds in (1.16) for $P(z) = \lambda z^n$, $\lambda \neq 0$. Theorem 2 includes a result due to Rahman [11] as a special case for $\lambda_1 = \lambda_2 = \alpha = \beta = 0$, where as inequality (1.15) reduces to a result due to Jain [6,Theorem 1] for $\lambda_1 = \lambda_2 = \alpha = 0$. For $\lambda_1 = \lambda_2 = 0$, inequality (1.15) reduces to inequality (1.6).

Lastly, for class of polynomial having no zeros in |z| < 1, we prove the following generalization of Theorem B.

Theorem 3. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for every complex numbers α, β with $|\alpha| \le 1$, $|\beta| \le 1$ and $R \ge 1$,

$$\begin{aligned} \left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right| \\ &\leq \frac{1}{2} \left[\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |B[z^n]| \\ &+ \left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |\lambda_0| \right] \max_{|z|=1} |P(z)|, \quad for \quad |z| \geq 1. \end{aligned}$$
(1.17)

Equality holds in (1.17) for $P(z) = z^n + 1$. If we take $\alpha = \beta = 0$ in Theorem 3, we get the following result.

Corollary 2. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for $R \ge 1$,

$$|B[P(Rz)]| \le \frac{1}{2} \{ R^n |B[z^n]| + |\lambda_0| \} \max_{|z|=1} |P(z)|, \quad for \quad |z| \ge 1.$$
(1.18)

The result is sharp and equality holds for $P(z) = z^n + 1$. For R = 1, inequality (1.18) reduces to a results due to Shah and Liman [13].

Remark 3. Theorem 3 includes some well-known inequalities as special case. For example inequality (1.17) reduces to a result due to Aziz and Rather [4] for $\lambda_1 = \lambda_2 = \beta = 0$. For $\lambda_1 = \lambda_2 = \alpha = 0$ inequality (1.17) reduces to result due to Jain [7] where as for $\lambda_1 = \lambda_2 = 0$ inequality (1.18) reduces to

$$|P(Rz)| \le \frac{1}{2} \{R^n + 1\} \max_{|z|=1} |P(z)| \quad R \ge 1.$$

If we take $\lambda_0 = \lambda_2 = \alpha = \beta = 0$, inequality (1.17) reduces to inequality (1.3).

2 Lemmas

For the proofs of the theorems, we need the following lemmas. The first lemma was proved by Aziz [2].

Lemma 1 If P(z) is a polynomial of degree n having all its zeros in $|z| \le k(k \le 1)$, then for every R > 1,

$$|P(Rz)| \ge \left(\frac{R+k}{1+k}\right)^n |P(z)|, \quad for \quad |z| = 1.$$
 (2.1)

The following lemma follows from corollary 18.3 of [10].

Lemma 2 If all the zeros of a polynomial P(z) of degree n lie in a circle $|z| \leq 1$, then all the zeros of the polynomial B[P(z)] also lie in the circle $|z| \leq 1$.

Lemma 3. If P(z) is a polynomial of degree n such that $P(z) \neq 0$, in |z| < 1, then

$$|B[P(z)]| \le |B[Q(z)]|, \quad for \quad |z| \ge 1,$$
(2.2)

where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$.

Lemma 4 If P(z) is a polynomial of degree n, then for $|z| \ge 1$,

$$|B[P(z)]| + |B[Q(z)]| \le \{|B[z^n]| + |\lambda_0|\} \max_{|z|=1} |P(z)|,$$
(2.3)

where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$.

The above two lemmas are due to Shah and Liman [13].

Lemma 5 If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then for every complex numbers α, β with $|\alpha| \le 1, |\beta| \le 1$ and $R \ge 1$,

$$\left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$\leq \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} B[Q(z)] \right|, \qquad (2.4)$$

for $|z| \ge 1$, where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$.

Proof. If $P(z) \neq 0$ in |z| < 1, then by Lemma 3 we have $|B[P(z)]| \leq |B[Q(z)]|$ for $|z| \geq 1$ and hence for R = 1, we have nothing to prove. For R > 1, since |P(z)| = |Q(z)| for |z| = 1, it follows by Rouche's theorem that for every complex number λ with $|\lambda| > 1$, the polynomial $T(z) = P(z) - \lambda Q(z)$ does not vanish in |z| > 1, with at least one zero in |z| < 1. Let $T(z) = (z - re^{i\delta})F(z)$ where r < 1 and F(z) is a polynomial of degree n - 1 having no zeros in |z| > 1. Applying Lemma 1 with k = 1, for every R > 1, $0 \leq \theta \leq 2\pi$

$$T(Re^{i\theta})| \ge |Re^{i\theta} - re^{i\delta}| \left(\frac{R+1}{2}\right)^{n-1} |F(e^{i\theta})|$$

= $\left(\frac{R+1}{2}\right)^{n-1} \left|\frac{Re^{i\theta} - re^{i\delta}}{e^{i\theta} - re^{i\delta}}\right| |(e^{i\theta} - re^{i\delta})F(e^{i\theta})|$
 $\ge \left(\frac{R+1}{2}\right)^{n-1} \left(\frac{R+r}{1+r}\right) |T(e^{i\theta})|,$

or

$$\left(\frac{r+1}{R+r}\right)|T(Re^{i\theta})| \ge \left(\frac{R+1}{2}\right)^{n-1}|T(e^{i\theta})|, R>1 \quad and \quad 0 \le \theta \le 2\pi, \quad (2.5)$$

since R > 1 > r, hence $T(Re^{i\theta}) \neq 0$ and $(\frac{2}{R+1}) > (\frac{r+1}{R+r})$, from inequality (2.5), we have

$$|T(Rz)| > \left(\frac{R+1}{2}\right)^n |T(z)|, \quad |z| = 1, \ R > 1.$$
 (2.6)

Hence for every complex number α with $|\alpha| \leq 1$, we have

$$|T(Rz) - \alpha T(z)| \ge |T(Rz)| - |\alpha||T(z)| \\> \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} |T(z)|, \quad for \ |z| = 1 \ and \ R > 1. \ (2.7)$$

Since $T(Re^{i\theta}) \neq 0$ and $(\frac{R+1}{2})^n > 1$, hance from inequality (2.6), we have

$$|T(Re^{i\theta})| > (|T(e^{i\theta})|, \quad for \quad R > 1 \text{ and } \quad 0 \le \theta \le 2\pi,$$

equivalently

$$|T(Rz)| > (|T(z)|, \text{ for } |z| = 1 \text{ and } R > 1.$$

Since all the zeros of T(Rz) lie in |z| < 1, it follows (by Rouche's theorem for $|\alpha| \le 1$) that the polynomial $T(Rz) - \alpha T(z)$ does not vanish in $|z| \ge 1$. Hence from inequality (2.7)(by Rouche's theorem for $|\beta| \le 1$), we have the polynomial

$$S(z) = T(Rz) - \alpha T(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} T(z),$$

has all its zeros in |z| < 1. Therefore, by Lemma 2, all the zeros of B[S(z)] lie in |z| < 1. Replacing T(z) by $P(z) - \lambda Q(z)$ and since B is liner, it follows that the polynomial

$$B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] - \lambda \left\{ B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right\}$$

having no zeros in $|z| \ge 1$. This implies

$$\left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} B[P(z)] \right| \\ \leq \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} B[Q(z)] \right|,$$
(2.8)

for $|z| \ge 1$. If this is not true, then there is a point $z = z_0$ with $|z_0| \ge 1$, such that

$$\left| B[P(Rz_0)] - \alpha B[P(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z_0)] \right|$$

>
$$\left| B[Q(Rz_0)] - \alpha B[Q(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z_0)] \right|.$$

Since all the zeros of Q(z) lie in $|z| \leq 1$, hence (As in case of T(z)) all the zeros of

$$B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \quad lie \ in|z| < 1,$$

for every complex numbers α, β with $|\alpha| \leq 1, |\beta| \leq 1$ and R > 1. Therefore

$$B[Q(Rz_0)] - \alpha B[Q(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z_0)] \neq 0 \quad with \quad |z_0| \ge 1,$$

we take

$$\lambda = \frac{B[P(Rz_0)] - \alpha B[P(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z_0)]}{B[Q(Rz_0)] - \alpha B[Q(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z_0)]}$$

so that $|\lambda| > 1$ and for this value λ , $B[S(z_0)] = 0$ for $|z_0| \ge 1$, which contradicts the fact that all the zeros of B[S(z)] lie in |z| < 1. This proves the desired result.

3 Proofs of the theorems

Proof of Theorem 1. For R = 1, it is already proved by Rahman [11].We assume R > 1. On Lemma 1, if we take k = 1 and $P(z) \neq 0$ in $|z| \ge 1$, then one can easily obtain

$$|P_1(Rz)| > \left(\frac{R+1}{2}\right)^n |P_1(z)|, \quad |z| = 1 \text{ and } R > 1.$$
(3.1)

Since $P_1(Re^{i\theta}) \neq 0, \ 0 \leq \theta < 2\pi$ and $(\frac{R+1}{2})^n > 1$ from above inequality we have $|P_1(Re^{i\theta})| > |P_1(e^{i\theta})|, R > 1$.

Equivalently,

$$|P_1(Rz)| > |P_1(z)|$$
, for $|z| = 1$ and $R > 1$.

For every complex number α with $|\alpha| \leq 1$ and using inequality (3.1), we have

$$|P_1(Rz) - \alpha P_1(z)| \ge |P_1(Rz)| - |\alpha||P_1(z)|$$

> $\left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} |P_1(z)|, \text{ for } |z| = 1 \text{ and } R > 1.(3.2)$

Since all the zeros of $P_1(Rz)$ lie in |z| < 1, it follows (by Rouche's theorem for $|\alpha| \le 1$) that the polynomial $P_1(Rz) - \alpha P_1(z)$ has all its zeros in |z| < 1. Hence from inequality (3.2)(by Rouche's theorem for $|\beta| \le 1$), we have the polynomial

$$F(z) = P_1(Rz) - \alpha P_1(z) + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} P_1(z),$$

has all its zeros in |z| < 1. So, by Lemma 2, all the zeros of B[F(z)] lie in |z| < 1. Replacing $P_1(z)$ by $P(z) - \lambda M z^n$ and since B is liner, it follows that the polynomial

$$B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] - \lambda M B[z^n] \left\{ R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right\}$$

having no zeros in $|z| \ge 1$. This implies

$$\left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$\leq \left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |B[z^n]|M,$$

for $|z| \ge 1$. If this is not true, then there is a point $z = z_0$ with $|z_0| \ge 1$, such that

$$\left| B[P(Rz_0)] - \alpha B[P(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z_0)] \right|$$

> $\left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |B[z_0^n]|M.$

Since all the zeros of Mz^n lie in |z| < 1, hence (As in case of F(z)) all the zeros of

$$\left\{R^n - \alpha + \beta \left\{\left(\frac{R+1}{2}\right)^n - |\alpha|\right\}\right\} MB[z^n]$$

lie in |z| < 1. We take

$$\lambda = \frac{B[P(Rz_0)] - \alpha B[P(z_0)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z_0)]}{\left\{ R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right\} B[z_0^n] M}$$

so that $|\lambda| > 1$ and for this value λ , $B[F(z_0)] = 0$ for $|z_0| \ge 1$, which contradicts the fact that all the zeros of B[F(z)] lie in |z| < 1. This proves the Theorem 1.

Proof of Theorem 2. The result is trivial if (R = 1) (Lemma 4), so we suppose that R > 1. If $M = \max_{|z|=1} |P(z)|$, then $|P(z)| \le M$ for |z| = 1. Now for every complex number λ with $|\lambda| > 1$, we have the polynomial $W(z) = P(z) + \lambda M$ has no zeros in |z| < 1 and on applying Lemma 5, we get for $|z| \ge 1$ and R > 1,

$$\left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} B[P(z)] + \lambda \left[1 - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right] \lambda_0 M \right| \\ \leq \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} B[Q(z)] + \bar{\lambda} \left[R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2} \right)^n - |\alpha| \right\} \right] B[z^n] M \right|$$

$$(3.3)$$

where $|\alpha| \leq 1$, $|\beta| \leq 1$ and $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$. Choosing the argument of λ , which is possible by (1.11) such that

$$\begin{aligned} \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right. \\ \left. + \bar{\lambda} \left[R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right] MB[z^n] \right| \\ \left. = |\lambda| \left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| M|B[z^n]| \\ \left. - \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right|, \end{aligned}$$

we get from (3.3)

$$\begin{vmatrix} B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \end{vmatrix}$$
$$- |\lambda||\lambda_0| \left| 1 - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| M$$
$$\leq |\lambda| \left| R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| M|B[z^n]|$$
$$- \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right|, \qquad (3.4)$$

for $|z| \ge 1$, $|\alpha| \le 1$, $|\beta| \le 1$, and R > 1, making $|\lambda| \to 1$ in (3.4), we get (1.15). This completes the proof of Theorem 2.

Proof of Theorem 3. By hypothesis P(z) does not vanish in |z| < 1, therefore by Lemma 5 we have

$$\left| B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right| \\ \leq \left| B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right|,$$

for $|z| \ge 1$ where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$. Equavalently

$$2\left|B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$\leq \left|B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$+ \left|B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right|, \qquad (3.5)$$

on applying Theorem 2, we get

$$2\left|B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$\leq \left|B[P(Rz)] - \alpha B[P(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[P(z)] \right|$$

$$+ \left|B[Q(Rz)] - \alpha B[Q(z)] + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} B[Q(z)] \right|$$

$$\leq \left[\left|R^n - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |B[z^n]|$$

$$+ \left|1 - \alpha + \beta \left\{ \left(\frac{R+1}{2}\right)^n - |\alpha| \right\} \right| |\lambda_0| \right] \max_{|z|=1} |P(z)|,$$

which is inequality (1.17) and this completes proof of Theorem 3.

Primit 25.07.2009 Revised: 02.09.2010 Accepted: 02.12.2011

References

- N. C. ANKENY, T. J. RIVLIN, On a theorem of S. Bernstein, Pacific J. Math, 5(1955), 849-852.
- [2] A. AZIZ, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc, 35(1987) 247-256.
- [3] A. AZIZ, N. A. RATHER, Some compact generalization of Bernstein- type inequalities for polynomials, Math. Inequal Appl, 7(2004), no.3, 393-403.
- [4] A. AZIZ, N. A. RATHER, On an inequalities for S. Bernstein and Gauss-Lucas theorem, analytic and geometric inequalities and their applications, (Th. M. Rassias and H. M. Sarivastava eds), Kluwer Acad. Pub.

- [5] S. BERNSTEIN, Sur la limitation des derivees des polnomes, C. R. Acad. Sci. Paris, 190(1930), 338-341.
- [6] V. K. JAIN, On maximum modulus of polynomials, Indian J. Pure Appl. Math, 23(11)(1992), 815-819.
- [7] V. K. JAIN, Generalization of certain well-know inequalities for polynomials, Glasnik Matematicki, 32(52)(1997), 45-51.
- [8] V. K. JAIN, Inequalities for a polynomials and its derivative, Proc. Indian Acad. Sci, 110(2000),no 2, 137-146.
- P. D. LAX, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S), 50(1944), 509-513.
- [10] M. MARDEN, Geometry of polynomials, Math. Surveys, Amer. Math. Soc. Providence. RI, 1949.
- [11] Q. I. RAHMAN, Functions of exponential type, Trans. Amer. Math. Soc, 135(1969), 295-309.
- [12] G. POLYA, G. SZEGO, Problems and theorems in analysis(New york: Springer-Verlag), 1(1972).
- [13] W. M. SHAH, A. LIMAN, An operator preserving inequalities between polynomials, J. Inequal. Pure and Appl. Math, Volume 9(2008), Issue1, Article 25, 8pp.

Received: 25.07.2009, Revised: 02.09.2010, Accepted: 02.12.2011.

> Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran E-mails: m_ahmadi_baseri@yahoo.com mbidkham@semnan.ac.ir madjid.eshaghi@gmail.com