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Abstract

Let I ) J be two square free monomial ideals of a polynomial algebra over a field
generated in degree ≥ 1, resp. ≥ 2 . Almost always when I contains precisely one variable,
the other generators having degrees ≥ 2, if the Stanley depth of I/J is ≤ 2 then the usual
depth of I/J is ≤ 2 too, that is the Stanley Conjecture holds in these cases.
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Introduction

Let K be a field, S = K[x1, . . . , xn] be the polynomial algebra in n variables over K and
I ) J two square free monomial ideals of S. We assume that I, J are generated by square
free monomials of degrees ≥ d, resp. ≥ d + 1 for some d ∈ N. Then depthS I/J ≥ d (see
[4, Proposition 3.1], [12, Lemma 1.1]). Upper bounds of depthS I/J are given by numerical
conditions in [11], [12, Theorem 2.2], [13, Theorem 1.3] and [15, Theorem 2.4]. An important
tool in the proofs is the Koszul homology, except in the last quoted paper, where the results are
stronger, but the proofs are extremely short relying completely on some results concerning the
Hilbert depth, which proves there to be a very strong tool (see [2], [17] and [6]). These results
are inspired by the so called the Stanley Conjecture, which we explain below.

Let PI\J be the poset of all square free monomials of I \J (a finite set) with the order given
by the divisibility. Let P be a partition of PI\J in intervals [u, v] = {w ∈ PI\J : u|w,w|v},
let us say PI\J = ∪i[ui, vi], the union being disjoint. Define sdepthP = mini deg vi and the so
called Stanley depth of I/J given by sdepthS I/J = maxP sdepthP, where P runs in the set of
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all partitions of PI\J (see [4], [16]). The Stanley depth is not easy to handle, see [4], [14], [7],
[5] for some of its properties.

Stanley’s Conjecture says that sdepthS I/J ≥ depthS I/J . Thus the Stanley depth of I/J
is a natural combinatorial upper bound of depthS I/J and the above results give numerical
conditions to imply upper bounds of sdepthS I/J . When J = 0 the Stanley Conjecture holds
either when n ≤ 5 by [9], or when I is an intersection of four monomial prime ideals by [8], [10],
or when I is an intersection of three primary ideals by [18], or when I is an almost complete
intersection by [3].

Let r be the number of the square free monomials of degree d of I and B (resp. C) be the
set of the square free monomials of degrees d + 1 (resp. d + 2) of I \ J . Set s = |B|, q = |C|.
If either s > r + q, or r > q, or s < 2r then sdepthS I/J ≤ d+ 1 and if the Stanley Conjecture
holds then any of these numerical conditions would imply depthS I/J ≤ d + 1. In particular
this was proved directly in [13] and [15].

Now suppose that I is generated by one variable and some square free monomials of degrees
≥ 2. It is the purpose of our paper to show that almost always if sdepthS I/J ≤ 2 then
depthS I/J ≤ 2 (see our Theorem 1.10). It is known already that sdepthS I/J ≤ 1 implies
depthS I/J ≤ 1 (see [12, Theorem 4.3]) and so our Theorem 1.10 could be seen as a new step
(small but difficult) in the study of Stanley’s Conjecture.

1 Stanley depth of some square free monomial ideals

Let I ) J be two square free monomial ideals of S. We assume that I, J are generated by
square free monomials of degrees ≥ d, resp. ≥ d + 1 for some d ∈ N. As above B (resp. C)
denotes the set of the square free monomials of degrees d+ 1 (resp. d+ 2) of I \ J .

Lemma 1.1. Suppose that d = 1, I = (x1, . . . , xr) for some 1 ≤ r < n and J ⊂ I be a square
free monomial ideal generated in degree ≥ 2. Let B be the set of all square free monomials of
degrees 2 from I \ J . Suppose that depthS I/(J + ((xj) ∩ B)) = 1 for some r < j ≤ n. Then
depthS I/J ≤ 2.

Proof: Since I/(J + ((xj)∩B)) has a square free, multigraded free resolution we see that only
the components of square free degrees of

TorSn−1(K, I/(J + (xj) ∩B))) ∼= Hn−1(x; I/(J + (xj) ∩B))

are nonzero. Thus we may find z =
∑r
i=1 yixie[n]\{ı} ∈ Kn−1(x; I/(J + (xj) ∩ B), yi ∈ K

inducing a nonzero element in Hn−1(x; I/(J + (xj) ∩ B). Here we denoted eτ = ∧j∈τ ej for a
subset τ ⊂ [n]. Then we see that

z′ =

r∑
i=1

yixie[n]\{i,j} ∈ Kn−2(x; I/J)

induces a nonzero element in Hn−2(x; I/J). Thus depthS I/J ≤ 2 (see [1, Theorem 1.6.17]).
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Example 1.2. Let n = 4, r = 2, d = 1, I = (x1, x2), J = (x1x2), B = {x1x3, x1x4, x2x3, x2x4}.
Then F = I/(J + (x1) ∩ B) ∼= (x1, x2)/((x1) ∩ (x2, x3, x4)) has sdepth and depth = 1, but
depthS I/J = 3. Thus the statement of the above lemma can be false if j < r. More precisely,
depthS F = 1 because z = x1e234 induces a nonzero element in H3(x;F ) but e1 is not present
in e234.

Proposition 1.3. Suppose that I ⊂ S is generated by {x1, . . . , xr} for some 1 ≤ r ≤ n and
some square free monomials of degrees ≥ 2, and xixtxk ∈ J for all i ∈ [r] and r < t < k ≤ n.
Then depthS I/J ≤ 2.

Proof: First suppose that I = (x1, ..., xr). If there exists j > r such that depthS I/(J +
(xj)∩B) = 1 then we may apply the above lemma. Thus we may suppose that depthS I/(J +
(xj) ∩ B) ≥ 2 for all j > r. Assume that depthS I/J > 2. By decreasing induction on
r < t ≤ n we show that depthS I/(J + (xt, . . . , xn)) ∩ B) ≥ 2. We assume that t < n
and depthS I/(J + (xt+1, . . . , xn)) ∩ B) ≥ 2, depthS I/(J + (xt, . . . , xn)) ∩ B) = 1. Set L =
(J + (xt) ∩B) ∩ (J + (xt+1, . . . , xn) ∩B). In the following exact sequence

0→ I/L→ I/(J + (xt) ∩B)⊕ I/(J + (xt+1, . . . , xn) ∩B)→ I/(J + (xt, . . . , xn) ∩B)→ 0

the last term has the depth 1 and the middle the depth ≥ 2. By the Depth Lemma we get
depthS I/L = 2.

Remains to show that depthS I/J = depthS I/L. Note that there exist no c ∈ C multiple
of xtxj for some r < t < j ≤ n by our hypothesis. Thus L = J . Then it follows depthS I/J = 2
which contradicts our assumption. The induction ends for t = r + 1 and we get depthS I/(J +
(xr+1, . . . , xn) ∩B) = 2; but this is not possible (see for example [12, Lemma 1.8]).

Now suppose that I = U + V , where U = (x1, ..., xr) and V is generated by some square
free monomials of degrees ≥ 2. In the following exact sequence

0→ U/(U ∩ J)→ I/J → I/(U + J)→ 0

the first term has depth ≤ 2 from above and the last term is isomorphic with V/(V ∩ (U + J))
and has depth ≥ 2 by [12, Lemma 1.1]. So by the Depth Lemma it follows that depth I/J ≤ 2.

Example 1.4. Let n = 4, I = (x1, x2, x3), J = (x1x3). Clearly, B1 = ∅,
B = {x1x2, x1x4, x2x3, x2x4, x3x4} and C = {x1x2x4, x2x3x4}. We have s = 5, r = 3, q = 2
and so s = r + q. Note that each c ∈ C is a multiple of a monomial of the form xixj for some
1 ≤ i < j ≤ 3 and so depthS I/J ≤ 2 by the above proposition. On the other hand, it is easy
to see that z = x1e2 ∧ e3 − x2e1 ∧ e3 + x3e1 ∧ e2 induces a nonzero element in H2(x; I/J) and
so again depthS I/J ≤ 2.

Lemma 1.5. If a monomial u of degree k from I \ J has all multiples of degrees k + 1 in J
then depth I/J ≤ k.

Proof: Renumbering the variables x we may suppose that u = x1 · · ·xk. Then we see that
u(xk+1, ..., xn) = 0 so AnnS u = (xk+1, ..., xn) ∈ AssS I/J. Thus depth I/J ≤ k.
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Lemma 1.6. Suppose that J ⊂ I are square free monomial ideals generated in degree ≥ d+ 1,
respectively ≥ d and let V be an ideal generated by e square free monomials of degrees ≥ d+ 2,
which are not in I. Then sdepthS(I + V )/J ≤ d+ 1 (resp. depthS(I + V )/J ≤ d+ 1) implies
that sdepthS I/J ≤ d+ 1 (resp. depthS I/J ≤ d+ 1). For the depth the converse is also true.

Proof: By induction on e, we may consider only the case e = 1, that is V = {v}. In the
following exact sequence

0→ I/J → (I + V )/J → (I + V )/I → 0

the last term is isomorphic with (v)/((v)∩ I) and has depth and sdepth ≥ d+ 2. Then the first
term has sdepth ≤ d+ 1 by [14, Lemma 2.2] and depth ≤ d+ 1 by the Depth Lemma.

Lemma 1.7. Suppose that I ⊂ S is generated by x1, . . . , xr and a nonempty set E of square
free monomials of degrees 2 in the variables xr+1, . . . , xn, and sdepthS I/J = 2. Let x1xt ∈ B
for some t, r < t ≤ n, I ′ = (x2, . . . , xr) + (B \ {x1xt}), J ′ = J ∩ I ′ and P a partition of I ′/J ′

with sdepth 3. Assume that any square free monomial u ∈ S of degree 2, which is not in I,
satisfies x1u ∈ J . Then

1. For any a ∈ (E ∩ (xt)) with x1a 6∈ J the interval [a, x1a] is in P.

2. If c = xtxixj 6∈ J , r < i < j ≤ n, i, j 6= t and x1xtxi, x1xtxj 6∈ J then b = c/xt ∈ B and
if moreover x1b 6∈ J then c is not present in an interval [a, c], a ∈ B of P.

Proof: Let a = xtxν be a monomial of B \ (x2, . . . , xr, x1xt)) which satisfies x1a 6∈ J . Suppose
that the interval [a, x1a] is not in P. Then there exists in P an interval [a, c] with c ∈ C. Thus
x1xν is in B and so in P there exists an interval [x1xν , c

′], c′ ∈ C,. We replace the interval
[x1xν , c

′] by [x1, x1a] to get a partition of I/J with sdepth ≥ 3. However, such partition of I/J
is not possible because sdepthS I/J = 2. Thus the interval [a, x1a] is in P.

Now, let c be as in (2). We will show that b = c/xt ∈ B. Indeed, if b 6∈ B then b 6∈
(x1, . . . , xr) because otherwise b ∈ J , which is false. Thus c can enter only in an interval [a, c]
for let us say a = xtxi. But this interval is not in P because a belongs to the interval [a, x1a].
Contradiction! Thus c does not appear in the intervals of P. Replacing [a, x1a] with [a, c] in
P we get another partition of I ′/J ′ with sdepth 3, where the interval [a, x1a] is not present,
contradicting (1).

Moreover suppose that x1b 6∈ J . By (1), c can appear only in the interval [b, c] because we
have already the intervals [xtxi, x1xtxi], [xtxj , x1xtxj ] in P. Then we cannot have an interval
[b, x1b] in P and so x1b could appear in the interval, let us say [x1xi, x1b]. Certainly, it is possible
that x1b will not appear at all in an interval of P, but we may modify P to get this. Replace
in P the intervals [x1xi, x1b], [b, c], [xtxi, x1xtxi] by the intervals [b, x1b], [xtxi, c], [x1xi, x1xtxi]
and we get another partition of I ′/J ′ with sdepth 3 but without the interval [xtxi, x1xtxi],
contradicting again (1).
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Lemma 1.8. Suppose that I ⊂ S is generated by x1 and a nonempty set E of square free
monomials of degrees 2 in x2, . . . , xn and sdepthS I/J = 2. Assume that x1a 6∈ J for all a ∈ E
and any square free monomial u ∈ S of degree 2, which is not in I, satisfies x1u ∈ J . Then
depthS I/J ≤ 2.

Proof: Apply induction on |E|. If |E| = 0 then C ∩ (x1) = ∅ and the conclusion follows from
Lemma 1.5. Let 1 < t ≤ n be such that x1xt ∈ B. Set It = (B \ {x1xt}) and Jt = J ∩ It. In
the exact sequence

0→ It/Jt → I/J → I/J + It → 0

the last term has depth ≥ 2 because it is isomorphic with (x1)/(x1)∩(J+It) and x1xt 6∈ J+It.
If sdepthS It/Jt ≤ 2 then we get depthS It/Jt ≤ 2 by [12, Theorem 4.3]. Applying the Depth
Lemma we get depthS I/J ≤ 2.

Thus we may assume that sdepthS It/Jt ≥ 3 for all 1 < t ≤ n such that x1xt ∈ B. Let
P = Pt be a partition of It/Jt with sdepth = 3. By the above lemma the intervals [aj , x1aj ],
1 ≤ j ≤ k are in P.

Let b = xtxi ∈ E, t < i ≤ n. Suppose that there exists c ∈ C \ (x1) such that b|c = xtxixj .
If there exists another b′ ∈ E such that b′|c then according to the above lemma (applied possible
for different t) the third divisor of degree 2 of c is in E as well. We know that x1a 6∈ J for
all a ∈ E and so from the above lemma (2) c is not present in an interval [a, c], a ∈ B of Pt.
Replacing [b, x1b] with [b, c] we get a contradiction with (1) from the above lemma. It remains
that b is the only divisor of c from I with degree 2. Set I ′ = (I \ {b}) and J ′ = J ∩ I ′. In the
exact sequence

0→ I ′/J ′ → I/J → I/J + I ′ → 0

the last term has depth ≥ 2 because it is isomorphic with (b)/(b)∩ (J + I ′) and has sdepth = 3
since [b, c] is the only interval of the poset of I/J + I ′ starting with a monomial of degree ≤ 2.
By [14, Lemma 2.2] we have sdepthS I

′/J ′ ≤ 2 and so by the induction hypothesis on |E| we
have depthS I

′/J ′ ≤ 2. Applying the Depth Lemma we get again depthS I/J ≤ 2.
Suppose now that for all b ∈ E there is no c ∈ C \ (x1) such that b|c. Thus |C| = |E| and

by [13] we get depthS I/J ≤ 2 because |C|+ 1 < |E|+ 2 ≤ |B|.

Proposition 1.9. Suppose that I ⊂ S is generated by x1 and a nonempty set E of square free
monomials of degrees 2 in x2, . . . , xn and sdepthS I/J = 2. Let E′ = {a ∈ E : x1a ∈ C} and
E′′ = E \ E′. Assume that any square free monomial u ∈ S of degree 2, which is not in I,
satisfies x1u ∈ J and one of the following conditions holds:

1. |E′′| ≤ |C \ (x1, E
′)|

2. |E′′| > |C \ (x1, E
′)| and |B| 6= |C|+ 1.

Then depthS I/J ≤ 2.

Proof: If E′′ = ∅ then we apply the above lemma. Apply induction on |E′′|. If E′ = ∅ then
C ∩ (x1) = ∅ and the conclusion follows from Lemma 1.5. Let E′′ = {a1, . . . , ak}, k > 0. The
idea of the proof of the above lemma can be applied here reducing our problem to the case
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when (C \ (x1)) ⊂ (E′′). Indeed, if c ∈ (C \ (x1)) is not in (E′′) then c ∈ (b′) for some b′ ∈ E′
and it follows that b′ is the only divisor of c from I with degree 2. Since sdepthS I/J ≤ 2 we
see as above that depthS I/J ≤ 2.

Choose b ∈ E′ and t, 1 < t ≤ n such that xt|b. Set I ′ = (B \ {x1xt}), J ′ = J ∩ I ′. In the
following exact sequence

0→ I ′/J ′ → I/J → I/(I ′ + J)→ 0

the last term is isomorphic with (x1)/(x1)∩ (I ′+J) and has depth ≥ 2 because x1xt 6∈ (I ′+J).
If sdepthS I

′/J ′ ≤ 2 then by [12, Theorem 4.3] we get depthS I
′/J ′ ≤ 2 and using the Depth

Lemma it follows depthS I/J ≤ 2.
Thus we may suppose that sdepthS I

′/J ′ ≥ 3 and let P = Pt be a partition of I ′/J ′ with
sdepth 3. P must contain [aj , cj ], j ∈ [k], cj ∈ C and some other intervals.

We may suppose that ci ∈ (E′) if and only if p < i ≤ k for some 0 ≤ p ≤ k. Moreover, we
will arrange to have as many as possible cj outside (E′). If c′ ∈ (C \ (x1)) is a multiple of let us
say ap+1, but c′ 6∈ (E′), we may replace in the above intervals cp+1 by c′, the effect being the
increasing of p. Thus after such procedure we may suppose that either p = k, or there exist no
c in (C \ (x1, c1, . . . , cp)) ∩ (ap+1, . . . , ak) which is not in (E′).

If p = k then set I ′′ = (x1, E
′), J ′′ = I ′′ ∩ J and see that in the exact sequence

0→ I ′′/J ′′ → I/J → I/(I ′′ + J)→ 0

the last term is isomorphic with (E′′)/(E′′) ∩ (I ′′ + J) and has sdepth 3 because the intervals
[aj , cj ], j ∈ [k] gives a partition with sdepth 3. Then sdepthS I

′′/J ′′ ≤ 2 by [14, Proposition 2.2]
and we get depthS I

′′/J ′′ ≤ 2 by Lemma 1.8. Using the Depth Lemma it follows depthS I/J ≤ 2.
Next suppose that p < k. Then (C \ (x1, c1, . . . , cp)) ∩ (ap+1, . . . , ak) ⊂ (E′). We may

choose c1, . . . , cp from the beginning (it is possible to make such changes in P) such that
e = |{i : ci 6∈ (ap+1, . . . , ak)}| is maxim possible and renumbering aj , j ≤ p we may suppose
that ci 6∈ (ap+1, . . . , ak) if and only if i ∈ [e] for some 0 ≤ e ≤ p.

Suppose that there exists c ∈ C \ (x1, c1, . . . , cp) such that c 6∈ E′. Then c is not in
(ap+1, . . . , ak) and necessary c ∈ (a1, . . . , ap). Assume that c ∈ (ai) for some i ∈ [p]. If i > e
then ci ∈ (ap+1, . . . , ak), let us say ci ∈ (aj) for some j > p and we may change cj by ci and
replace ci by c increasing p because ci 6∈ E′. This is not possible since p was maxim given.
Thus i ≤ e and so e > 0. If ci ∈ (ae+1, . . . , ap), let us say ci ∈ (ap) then we may replace cp by
ci and ci by c increasing e which is also not possible. Thus ci 6∈ (ae+1, . . . , ap).

Then set Ie = (x1, B \ {a1, . . . , ae}), Je = Ie ∩ J . In the exact sequence

0→ Ie/Je → I/J → I/(Ie + J)→ 0

the last term has sdepth 3 because we may write there the intervals [ai, ci], i ∈ [e] since ci 6∈ Ie.
By [14, Proposition 2.2] it follows that sdepthS Ie/Je ≤ 2 and so depthS Ie/Je ≤ 2 by induction
hypothesis on |E′′|. Using the Depth Lemma it follows depthS I/J ≤ 2.

Now suppose that there exist no such c, that is C \ (x1, E
′) = {c1, . . . , cp}. Thus p =

|C \ (x1, E
′)| and so we end the case when the condition (1) holds. Assume that the condition

(2) holds, in particular k > p and s = |B| 6= 1 + q for q = |C|. If s > 1 + q then we end with
[13]. Suppose that s < 1 + q. Then there exists a c ∈ C which does not appear in an interval
[b, cb] for some b ∈ (B \ {x1xt}). Note that c cannot be a cj for j ∈ [p] and so c ∈ (E′), let us
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say c ∈ (a) for some a ∈ E′. Let j be such that xj |a. We have x1xj ∈ B and there exists as
above a partition Pj with sdepth 3. Let Ia = (B \ {a}), Ja = Ia ∩ J . We see that Pj induces a
partition Pa of Ia/Ja with sdepth 3 replacing the interval [a, x1a] from Pj with [x1xj , x1a].

In Pa there is an interval [x1xt, x1a
′′
1 ] for some a′′1 = xtxi ∈ E′. We have a′′1 6= a because

otherwise we may change in Pt the interval [a′′1 , x1a
′′
1 ] by [a′′1 , c], which is false. Then there is

in Pa an interval [a′′1 , c
′′
1 ]. If c′′1 is not a cb as above then we may replace in Pt the interval

[a′′1 , x1a
′′
1 ] by [a′′1 , c

′′
1 ], which is again false. Thus c′′1 = cb1 for some b1 ∈ (B \ {x1xt}). If b1 = a

we may replace in Pt the intervals [a′′1 , x1a
′′
1 ], [b1, c

′′
1 ] by [a′′1 , c

′′
1 ], [b1, c], which is false. Then

there is in Pa an interval [b1, c
′′
2 ]. By recurrence we find in Pa the intervals [x1xt, x1a

′′
1 ], [a′′1 , c

′′
1 ],

[a′′2 , c
′′
2 ], . . . which define a partition Pa, where c is not present in an interval [b, c], b ∈ (B \{a}).

Adding the interval [a, c] to Pa we get a partition P ′ with sdepth 3 of IB/JB , where IB = (B),
JB = IB ∩J . But then we replace in P ′ the intervals [x1xt, x1a

′′
1 ], [x1xi, x1a

′′] by [x1, x1a
′′
1 ] and

we get a partition of I/J with sdepth 3. Contradiction!

Theorem 1.10. Suppose that I ⊂ S is generated by x1 and a nonempty set E of square free
monomials of degrees 2 in x2, . . . , xn and sdepthS I/J = 2. Let E′ = {a ∈ E : x1a ∈ C} and
E′′ = E \ E′. Assume that one of the following conditions holds:

1. |E′′| ≤ |C \ (x1, E
′)|

2. |E′′| > |C \ (x1, E
′)| and |B| 6= |C|+ 1.

Then depthS I/J ≤ 2.

Proof: We may assume n > 2 and there exists c = x1xn−1xn 6∈ J after renumbering the
variables x, otherwise we apply Proposition 1.3. Then z = xn−1xn 6∈ J .

First suppose that we may find c with z 6∈ I. Set I ′ = (B \{x1xn−1, x1xn}) and J ′ = I ′∩J .
Then necessary B ) {x1xn−1, x1xn} and so I ′ 6= J ′ because otherwise sdepthS I/J = 3. Note
that no b dividing c belongs to I ′ and so c 6∈ (J + I ′). In the following exact sequence

0→ I ′/J ′ → I/J → I/(I ′ + J)→ 0

the last term has sdepth ≥ 3 since [x1, c] is the whole poset of (x1)/(x1) ∩ (I ′ + J) except
some monomials of degrees ≥ 3. It has also depth ≥ 3 because xn−1xn 6∈ ((J + I ′) : x1). The
first term has sdepth ≤ sdepthS I/J = 2 by [14, Lemma 2.2] and so it has depth ≤ 2 by [12,
Theorem 4.3]. It follows depthS I/J ≤ 2.

Next suppose that there exist no such c, that is any square free monomial u ∈ S of degree
2, which is not in I satisfies x1u ∈ J . We may assume that C ⊂ (x1, B) by Lemma 1.6. Now
it is enough to apply Proposition 1.9.

Example 1.11. Let n = 3, r = 1, I = (x1, x2x3), J = 0. We have c = x1x2x3 6∈ J and
x2x3 ∈ I. Note also that sdepthS I = depthS I = 2.
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