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Abstract

We prove that under suitable conditions the recollement of two locally finite categories
is locally finite and similar statements for locally coirreducible categories and categories
that have Gabriel dimension and locally Krull dimension. We present applications to
(right) comodule categories over semiperfect coalgebras.
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1 Introduction

We consider the following diagram:

C
F

��
B (D)

D

G

??

where C and D are abelian categories and F and G are exact functors. Given such a diagram,
P. Gabriel [4] defined a new category that he called the recollement of C and D, and denoted

by C
∏
B
D. For the definition of C

∏
B
D see the next section. It is not difficult to see that this
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category is abelian. If C and D are Grothendieck categories and F and G commute with direct

sums then C
∏
B
D is also a Grothendieck category.

In this paper we consider diagrams (D) that satisfy the following conditions:

- C,D and B are Grothendieck categories, F and G are exact functors
- the quotient categories C/Ker F and D/Ker G are equivalent to B
- F and G are the the canonical functors
- F and G commute with direct sums (equivalently, Ker F and Ker G
are localizing subcategories of C and, respectively, D)

 (∗)

We prove (Theorem 1) that if we assume (∗), C and D are locally finite and F and G

commute with direct products then C
∏
B
D is locally finite. Moreover, we show that if C and D

have enough projectives then C
∏
B
D have enough projectives. We present applications of this

result to k-categories, see Theorem 2.
In the last section we show that if C and D are locally coirreducible then their recollement is

locally coirreducible as well. The same type of result holds if C and D have Gabriel dimension
and if C and D have locally Krull dimension.

2 Preliminaries

We recall first the definition of C
∏
B
D.

- An object is a triple (C,D, σ) where C is an object of C, D is an object of D and σ is an
isomorphism between F (C) and F (D).
- If (C,D, σ) and (C ′, D′, σ′) are two objects, a morphism between them is a couple (u, v) of
morphisms u : C → C′, v : D → D′, such that σ′ ◦ F (u) = G(v) ◦ σ.
- The composition of morphisms is given by (u, v) ◦ (u′, v′) = (u ◦ u′, v ◦ v′).

Remarks. By Proposition 1 of [4], page 440, if C and D are Grothendieck categories then

C
∏
B
D is in fact a pullback of C and D over B.

Note that the canonical functors (C,D, σ)→ C and (C,D, σ)→ D are exact.
The typical example of a recollement category comes from the theory of schemes. Indeed,

if (X,OX) is a scheme we denote by FX the Grothendieck category of OX -modules. If U and
V are two open subsets of X such that X = U ∪ V , we consider the diagram

FU

ρU

##
FU∩V

FV

ρV

;;
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where ρU and ρV are the restrictions M →M|U∩V , N → N|U∩V for M ∈ FU , N ∈ FV . By
Proposition 2, page 441, in [4] the category FX is the recollement of FU and FV over FU∩V .

The notion of quotient category of an abelian category through an “épaisse” subcategory
was introduced in [5]. If A is an abelian category and C is a full subcategory of A then C is called
épaisse if it is closed under subobjects, quotients, and extensions. For an épaisse subcategory
one can define the quotient category A/C. If C the canonical functor T : A → A/C has a right
adjoint then C is called localizing (see [4], page 372). It follows from Proposition 8, page 377,
in [4] that if A is a Grothendieck category the an épaisse subcategory is localizing if and only
if it is is closed under (arbitrary) direct sums.

If the localizing subcategory C is moreover close under direct products then C is called a
TTF class.

By Proposition 3, page 441, in [4] if (X,OX) is a scheme and U is an open subset of X
such that the injection morphism j : U ↪→ X is quasi-compact (i.e there exists a cover of X by
open affine subsets Vi such that Vi ∩U is quasi-compact for each i (see [6]) we can consider the
functor T that associates to an OX -module M the restriction M |U (which is an (U,OX |U)-
module). The functor induced by T by passing to quotient categories is an equivalence between
the categories FX/Ker T and FU .

A Grothendieck category C is called locally noetherian (locally finite) if C has a family of
noetherian (finite) generators. Obviously a locally finite category is also locally noetherian. C
is called semi-artinian if every non-zero object of C has a simple subobject. It is not difficult
to see that if C is at the same time locally noetherian and semi-artinian then it is locally finite
(because every noetherian object has finite length).

We recall as well that a Grothendieck category has the property AB4∗ (see [5]) if the
direct product is an exact functor. An example is the category A = R-mod (the category of
R-modules).

For a Grothendieck categoryA, we denote by Sp(A) the set of idencomposable type injectives
of A.

3 Recollement of locally finite quotient categories

Lemma 1. We assume that the diagram (D) satisfies (∗). Moreover we assume that C has the
property AB4∗. Then Ker F is a TTF class if and only if F commutes with direct products.

Proof: If F commutes with direct products then for any family (Mi)i∈I of objects of Ker F
we have that F (Mi) = 0 for every i ∈ I. Therefore F (

∏
i∈IMi) =

∏
i∈I F (Mi) = 0 and hence∏

i∈IMi is an object of Ker F . It follows that Ker F is a TTF class.

Conversely, assume that Ker F is a TTF class. Since B is equivalent with C/Ker F via the
canonical functor F : C → B, let S be the right adjoint functor of F . By [4], chapter III, we
have that F ◦ S ' 1B and the canonical morphism ψ : 1C → S ◦ F has the property that, for
any M ∈ C, Ker ψ(M) and Coker ψ(M) belong to Ker T .

Let (Mi)i∈I be a family of objects of Ker F . For i ∈ I we have the following exact sequence:

0→ Ker (ψ(Mi))→Mi
ψ(Mi)−−−−→ (S ◦ F )(Mi)→ Coker (ψ(Mi))→ 0 (1)
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Since S is the right adjoint functor of F , S commutes with direct products. There-
fore

∏
i∈I S(F (Mi)) ' S(

∏
i∈I F (Mi)) and hence F (

∏
i∈I S(F (Mi))) ' FS(

∏
i∈I F (Mi)) '∏

i∈I F (Mi). On the other hand, as C has AB4∗ it follows from the exact sequence (1) that we
have the following exact sequence:

0→
∏
i∈I

Ker ψ(Mi)→
∏
i∈I

Mi

∏
ψ(Mi)−−−−−−→

∏
i∈I

S(F (Mi))→
∏
i∈I

Coker ψ(Mi)→ 0

As we have
∏
i∈I Ker ψ(Mi) = 0 and

∏
i∈I Coker ψ(Mi) = 0, we deduce that F (

∏
i∈IMi) '

F (
∏
i∈I(S ◦ F )(Mi)) '

∏
i∈I F (Mi). That means that F commutes with direct products.

Lemma 2. Let A be a locally noetherian Grothendieck category and C a TTF-subcategory of
A. If C and A/C are locally finite then A is locally finite.

Proof: Let T : A → A/C be the canonical functor and M 6= 0 be a noetherian object of A. Let
t : A → C be the radical associated to the localizing subcategory C (hence t(X) =

∑
Y≤X Y ).

We will prove that M contains a simple object. If t(M) 6= 0 this assertions is clear since C is
locally finite. Let’s assume that t(M) = 0 and hence M is C-torsion free. Let S be the right
adjoint functor of T . In this case we have M ≤ (S ◦ T )(M) and moreover (S ◦ T )(M) is an
essential extension of M . It is clear that it suffices to prove that (S ◦ T )(M) contains a simple
object. So we may assume that M = (S ◦ T )(M) (hence M is C-closed). Since M 6= 0 we
have that T (M) 6= 0 and therefore there exists a simple object Y ∈ A/C such that Y ≤ T (M).
Therefore 0 6= S(Y ) ≤ (S ◦ T )(M) = M .

We will prove now that S(Y ) contains a simple object. If Z ≤ S(Y ), Z 6= 0, then 0 6= T (Z) ≤
(T◦)(Y ) = Y and hence, because Y is simple, we have that T (Z) = Y . Since T is an exact func-
tor we have that S(Y )/Z ∈ C. According to our hypothesis, C is a TTF-class (i.e. it is closed
to direct products). This implies that

∏
(Z≤Y,Z 6=0) S(Y )/Z ∈ C. As S(Y )/

⋂
(Z≤S(Y ),Z 6=0) Z

is a subobject of
∏

(Z≤Y,Z 6=0) S(Y )/Z ∈ C, we have that S(Y )/
⋂

(Z≤S(Y ),Z 6=0) Z ∈ C. It fol-

lows that
⋂

(Z≤S(Y ),Z 6=0) Z 6= 0 (because otherwise we will get that S(Y ) ∈ C) and clearly⋂
(Z≤S(Y ),Z 6=0) Z is a simple object in A.

Therefore we have proved that if M is a non-zero noetherian object of A then M has a
simple subobject. Hence A is semi-artinian and therefore it is locally finite.

We recall that a Grothendieck category A has enough projective objects if for every M ∈ A
there exists a projective object P ∈ A and an epimorhism P →M → 0

Theorem 1. We assume that the diagram (D) satisfies (∗). We assume also that the functors

F and G commute with direct products. If C and D are locally finite then C
∏
B
D is locally

finite. Moreover, if C and D have enough projective objects, then C
∏
B
D has enough projective

objects.
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Proof: By Lemma 1 in [4], page 442, if T is the functor (C,D, σ) → D then the functor
M → (M, 0, 0) is an isomorphism between the category Ker F and Ker T . Moreover, Ker T

is a localizing subcategory of C
∏
B
D and T defines by passing to the quotient category an

equivalence between C
∏
B
D/Ker T and D.

Since F is an exact functor, Ker F is a localizing subcategory. According to our hypothesis,
the two functors F and G commute with direct products. It follows that

∏
i∈I(Ci, Di, σi) =

(
∏
i∈I Ci,

∏
i∈I Di,

∏
i∈I σi) for any family (Ci, Di, σi)i∈I of objects in C

∏
B
D. Because F com-

mutes with direct products we have that Ker F is TTF-class. As Ker F and Ker T are iso-
morphic we have that Ker T is also TTF-class. Since C and D are locally finite it follows that

Ker T is locally finite. Using Lemma 2 we deduce that C
∏
B
D is locally finite.

Let’s assume now that C and D are locally finite and have enough projective objects. Ac-
cording to Theorem 3.1 in [2], a locally finite Grothendieck category satisfies AB4∗ if and only
if it has enough projective objects. It follows that both C and D satisfy AB4∗.

Let (Ci, Di, σi)i∈I be a family of objects of C
∏
B
D. As above, because F and G commute

with direct products, we have that the direct product of this family is (
∏
i∈I Ci,

∏
i∈I Di,

∏
i∈I σi).

It follows that the direct product is an exact functor in C
∏
B
D (i.e. the recollement category

satisfies AB4∗). Applying again Theorem 3.1 in [2] we deduce that C
∏
B
D has enough projective

objects.

Example: A scheme (X,OX) is called locally artinian if X can be covered by open affine
subsets Spec (Ai) where Ai is an artinian ring. (X,OX) is called artinian if it is locally artinian
and X is quasi-compact. Since every artinian ring is noetherian, it follows that (X,OX) is
noetherian.

We claim that if (X,OX) is an artinian scheme then the category FX is equivalent to an
artinian affine scheme (Spec A, Ã) where A is an artinian ring.

Indeed, by Theorem 1 of [4], page 443, FX is locally noetherian. In fact by Theorem 1 FX
is locally finite with Sp(FX) being finite. Therefore FX has finitely many simple objects. We
have that X =

⋃
Xi where Xi = Spec Ai and Ai are artinian rings. Hence X is finite and its

topology is the discrete one. Also, for x ∈ X we have that (OX)x is a local artinian ring. We
put then A =

∏
x∈X(OX)x. Clearly Spec A = X.

4 Applications to k-categories

Let k be a field (or, more generally, a commutative ring) and A be an abelian category. A is
called a k-abelian category if Hom(M,N) is a k-vector space for any objects M,N,∈ A and the
composition is k-bilinear. It is clear that if in the diagram (D) the three categories C, D and
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B are k-abelian categories and the functors F and G are k-linear the the recollement category

C
∏
B
D is k-linear.

If C is a k-coalgebra, we denote by MC the category of right C-comodule. In [9], M.
Takeuchi proved the following theorem:

Let A be a k-abelian category. Then A is k-linear equivalent toMC for some k-coalgebra C,
if and only if A is a Grothendieck locally finite category and Hom(M,N) is finite dimensional
over k for any two objects of finite length of A.

In [3], page 105, it is proved that if C is a coalgebra, then every localizing subcategory of
MC is a TTF-class. In the same book, page 131, it is shown that if the coalgebra C is right
semiperfect, i.e. the categoryMC has enough projectives, thenMC has the property AB4∗ of
Grothendieck.

Using Theorem 1 and Takeuchi’s we obtain the following result:

Theorem 2. We consider the diagram D satisfying (∗). We assume that C, D and B are
k-linear categories that satisfy the conditions of Takeuchi’s theorem mentioned above and that
F and G are k-linear. Moreover, we assume that C and D have enough projective objects
(this means that C, and D are equivalent to comodule categories over semiperfect coalgebras).

Then C
∏
B
D is k-linear and C

∏
B
D is equivalent to a comodule category MT for some right

semiperfect coalgebra T .

Proof: By Theorem 1 we that C
∏
B
D is a k-linear locally finite category. We want to prove

that if X and Y are two objects of finite length of C
∏
B
D then HomC

∏
B D(X,Y ) has finite

dimension over k. This fact follows from the Lemma 3 bellow. From Takeuchi’s theorem we get

that C
∏
B
D is equivalent to a right comodule category MT , for some coalgebra T . The fact

that T is a right semiperfect coalgebra follows from the last part of Theorem 1.

We introduce the following ad-hoc definition: we say that a category A has the property
(P) if, for any two objects X and Y of finite length of A, HomA(X,Y ) is finite dimensional.

Lemma 3. Let A be a k-locally finite Grothendieck category and let C be a localizing subcategory.
Assume that C and A/C have the property (P). Then A has the property (P).

Proof: Let X and Y be two objects of finite length of A. Using induction it suffices to prove
the finite dimensionality of HomA(X,Y ) if X and Y are simple objects. If X and Y are both
objects of C, as C has the property (P) we get that HomA(X,Y ) is finite dimensional. If X ∈ C
and Y 6∈ C then HomA(X,Y ) = 0. Similarly, if X 6∈ C and Y ∈ C then HomA(X,Y ) = 0. It
remains to consider the case X 6∈ C and Y 6∈ C. Since X and Y are simple, they are C-torsion
free.

Let T : A → A/C be the canonical functor. We have the canonical morphism of k-vector
spaces: HomA(X,Y )→ HomA/C(T (X), T (Y )), f → T (f) where f ∈ HomA(X,Y ). Since T (X)
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and T (Y ) are simple objects of A/C we have that HomA/C(T (X), T (Y )) has finite dimension
over k. Also if T (f) = 0 it follows that Im(f) ∈ C. If f 6= 0 we would have that Y = Im(f) and
hence Y ∈ C which contradicts our assumption. Therefore the morphism f → T (f) is injective
and hence HomA(X,Y ) is finite dimensional over k.

5 Krull and Gabriel dimensions of recollement categories

Let A be a Grothendieck category. A is called locally coirreducible (we will write l.c.) if every
non-zero object contains a non-zero coirreducible object (see [8]). A has Gabriel dimension if
for any localizing subcategory C & A the quotient category contains a simple non-zero object
(see [4]). It is known that if A has Gabriel dimension then A is a l.c. category (see [8]). A
is called a locally stable category if every localizing subcategory C has the form C = ∩I∈XCI
where X ⊆ Sp(A) and CI = {M ∈ A : Hom(M, I) = 0} (see [1]). Finally, A has locally Krull
dimension if there exists a family of generators (Ui)i∈I of A such that Ui has Krull dimension
for any i ∈ I. We set K-dimA = supi∈I K- dimUi. If A is locally finite then this definition
does not depend on the choice of the family of finite length generators. It is clear that if A has
locally Krull dimension then A has Gabriel dimension. Also if A is a l.c. category then A is
locally stable.

When the category R-mod is a l.c. category (respectively it has Gabriel dimension, respec-
tively it has locally Krull dimension, respectively it is locally stable) then the ring R called a
left l.c. module (respectively it has locally Krull dimension, respectively it is locally stable).

Theorem 3. We assume that the diagram (D) satisfies conditions (∗) and that the Grothendieck
categories C and D are l.c. (respectively they have Gabriel dimension, respectively they have
locally Krull dimension, respectively they are locally stable). Then the recollement category

C
∏
B
D is l.c. (respectively it has Gabriel dimension, respectively it has locally Krull dimension,

respectively it is locally stable).

Proof: As in the proof of Theorem 1, we let T be the functor (C,D, σ) → D and we apply
Lemma 1 in [4], page 442. We get that Ker F and Ker T are isomorphic and that Ker T is a

localizing subcategory of C
∏
B
D.

Assume that C and D are l.c. category. It follows from [8] that Ker F is a l.c. category
and therefore Ker T is an l.c. category. Also from [8] we have that if we have a Grothendieck
category A, C is a localizing subcategory and both C and A/C are l.c. categories then A is a

l.c. category. We deduce that C
∏
B
D is a l.c. category. Using similar results from [4], chapter

IV and [1] we get that if C and D have Gabriel dimension (respectively they are locally stable)

then C
∏
B
D has Gabriel dimension (respectively it is locally stable).

The proof that C
∏
B
D has Krull dimension provided that both C and D have Krull dimension

is analogous to the proof of Lemma 2, page 442, in [4].
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Remark. In [4], page 382, P. Gabriel defined what he called the Krull dimension of an abelian
category Nowdays this is called the Gabriel dimension. As a convention, for an abelian category
A, we denote by A0 the category in which the only objects are the null objects of A (instead of
A−1 as Gabriel does) and we carry on Gabriel’s construction to define the Gabriel dimension.
Then, under the assumptions of Theorem 3, if Gdim C = α and Gdim D = β (α and β are
ordinals) then sup{α, β} ≤ Gdim C

∏
B D ≤ inf{α+ β, β + α}. This follows from proposition 1

in [4], page 382 by interchanging C and D in the proof of Theorem 3.
A similar inequality can be obtained for the Krull dimension.

Corollary 1. Let (X,OX) be a scheme. Assume that X =
⋃n
i=1 Ui, where Ui are open quasi-

compact subsets of X, and (Ui,OX |Ui) ' (Spec Ai,Oi) where Ai are commutative rings. If
each Ai, 1 ≤ i ≤ n is an l.c. ring (respectively it has Gabriel dimension, respectively it has
locally Krull dimension, respectively it is locally stable) then the category FX is a l.c. category
(respectively it has Gabriel dimension, respectively it has locally Krull dimension, respectively
it is locally stable).

The proof of this corollary is immediate using induction on n.
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