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Abstract

We survey classical results and recent developments, old and new problems, conjectures
and ideas selected from the endless theme of iterated application of the fundamental rule
of addition. The multitude of forms created by this spring, like the commandment “Let
there be light” from the first day of creation, is emphasized by the role played by the prime
numbers. The subject sounds harmoniously between poetry and astronomy or geometry,
finding its origin in the East at Pingala (4-2nd century BC) and in the West at Apollonius
of Perga (3rd century BC). Our work is divided in two parts: the present paper is mostly
dedicated to playing with numbers, while the second one, which will follow in a companion
paper, is based on geometrical motives.
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1 From history to content

Repeated application of simple rules often produce very complex objects. This fact is revealed in
numerous situations (cf. Wolfram [Wol’02]). Pascal Arithmetic Triangle is generated recursively
by two basic rules:

(i) boundary conditions; (ii) insertion method. (R)

To obtain a row: (i) copy the row above and attach a 1 at each endpoint; (ii) between any
two consecutive elements that come from the previous row insert their sum; then delete the
older entries. Small changes in (i) and (ii) may produce very different constructions. Although,
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1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1
1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 153 18 1
1 19 171 969 3876 11628 27132 50388 75582 92378 92378 75582 50388 27132 11628 3876 969 171 19
1 20 190 1140 4845 15504 38760 77520 125970 167960 184756 167960 125970 77520 38760 15504 4845 1140 190 20 1
1 21 210 1330 5985 20349 54264 116280 203490 293930 352716 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1
1 22 231 1540 7315 26334 74613 170544 319770 497420 646646 705432 646646 497420 319770 170544 74613 26334 7315 1540 231 22 1
1 23 253 1771 8855 33649 100947 245157 490314 817190 1144066 1352078 1352078 1144066 817190 490314 245157 100947 33649 8855 1771 2563 23 1
4 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 1
1 25 300 2300 12650 53130 177100 480700 1081575 2042975 3268760 4457400 5200300 5200300 4457400 3268760 2042975 1081575 480700 177100 53130 12650 2300 300 25 1
1 26 325 2600 14950 65780 230230 657800 1562275 3124550 5311735 7726160 9657700 10400600 9657700 7726160 5311735 3124550 1562275 657800 230230 65780 14950 2600 325 26
1

Figure 1: The first 27 rows of Pascal triangle with entries written in base 10.

they usually share remarkable arithmetic, geometric, topologic, and probabilistic properties. In
each case, a ’kaleidoscope of mirrors’, or the multitude of symmetries involved is perhaps the
most appealing. We survey various such constructions, recent results and open questions.

Known for more than a millenium in Asia and Europe (cf. Burton [Bur’07]), the origins of
the Pascal triangle are lost in the mist of time. In Chandahs$astra, the Hindu scholar Pingala has
classified meters (chandas) or rhythm of poems that are closely allied to music (Bag [Bag’66]).
He enumerated and counted the meters of a given length n that have exactly r syllables of a kind.
In doing this, he obtained Meruprastara (the stairway to the mythical mountain Meru). Then
Halayudha (cca. 975) in Mrtasafijivani, a text of commentaries on Pingala’s Chandah$astra,
clearly described Meruprastara as what is today known as the arithmetic triangle of Pascal.
Among those who considered the triangle before Pascal, we find: Al-Karaji (953-1029), Persia;
Jia Xian (1010-1070), China; Al-Karaji (953-1029); Al-Samawal al-Maghribi (1030-1080) in
Iraq, Marocco, Iran in his treatise The brilliant in algebra; Omar Khayyam (1048-1131), it is
called Khayydm triangle in Iran; Yang Hui’s (1238-1298) triangle in China; in 1303 was named
the Old Method by Chu Chijie in Siyuan yujian (Jade Mirror of the Four Unknown). And
in the West: Ramon Llull, a Majorcan theologian (1232-1316); Niccolo Tartaglia in Generale
Trattato (1556) (the triangle bears his name in Italy); Michael Stifel in Arithmetica Integra
(1544); in 1527, Petrus Apianus puts the triangle on the frontispiece of his book. De Moivre
named it Triangulum Arithmeticum Pascalianum in 1730.

Pascal wrote his Traité du Triangle Arithmétique in 1654. It was the result of
a fruitful correspondence with Pierre de Fermat about calculating the odds in some games of
chance. The relations between binomial coefficients proved by Pascal, later led Newton to the
discovery of the binomial theorem for negative and fractional exponents, and Leibniz to the
discovery of infinitesimal calculuaﬂ Pascal triangle is extremely rich in displaying remarkable
sequences of integers, triangular numbers, Fibonacci and Padovan numbers, squares, powers,
Catalan, Bernoulli and Stirling numbers, etc. Consequently, there are so many relations, that
'when someone finds a new identity, there aren’t many people who get excited about it any
more, except the discoverer’ (cf. Donald Knuth, The art of computer science, Vol. I, Chap. 1).

1’On several occasions Leibniz was to declare that he was led to the invention of calculus more by studying
Pascal’s writings than anything else.” (cf. Burton pages 412-413))
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The following matrices [BC’04], [MP’09] nicely relate the triangle in the form used by Pascal

with one close to what we use today. Let L(c0); ; = (;), i,j > 0, where, (;) =0ifi<j.
1
1 1 0
1 2 1 1 0
L(oo) = 1 3 3 1 = exp 0 2 0
1 4 6 4 1 0 3 0
1 5 10 10 5 1
and
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
Po)=11 4 10 20 35
1 5 15 35 70
Then

P(o0) = L(o0) - L(co)™;  tr(P(n)) = 2 (2K)! and det(P(n)) = 1.

But looking further than pure identities, a more optimistic thought becomes appropriate,
that of Jacobi Bernoulli [Ber1713l Part II, Chapter 3, page 88|, who used the triangle to get into
the intricacies of sums of consecutive p powers. He admired the exceptional properties of the
triangle, which conceals within itself mysteries of combinations and top secrets of mathematics.

2 The Shape of the game

The mountain shape in Figure [1| captures some magic of the triangle. One can use Stirling’s
formula to study the shape of the outer curve. More generally, let b > 2, n and S be fixed
positive integers and denote by dp(m) the number of digits of m in base b. Then denote:

my(n, S) = al+'m_&(r11nzs Zdb(ak) and My(n,S) = e Zdb(ak).
@y, ;a, EN\{0} k=1 ay,...;an, EN\{0} k=1

Question 1. Estimate mp(n,S) and My(n, S).

One may ask about the distribution of digits in Figure [I} The first digit of the binomial
coeflicients appears to satisfy Benford’s law. The triangle has a different shape in another
number system, such as the Chinese one used by Chu Chijie in 1303 or the Arabic one employed
by Al-Samawal al-Maghribi.
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Question 2. Find the shape of the triangle in closed form.

Problems similar to Questions [I] and [2] may be addressed for the shape of individual rows
of the triangle (see Figure . The thickness of the lens shape figure that corresponds to the
n-the row of the Pascal triangle is ~ n. Remark that if n = 2m is even, the number that gives
that thickness is (m + 1)C,,, where C,, is the m-th Catalan number.

Figure 2: The 360th row of Pascal triangle. The binomial coefficients (320), 0 < k < 360, written
in base 10 are displayed centered, and the figure is rotated by 90 degrees in the counterclockwise

direction.

3 Singmaster Conjecture

Singmaster [Sng’71], [Sng’75] guesses that there are not too many points on any 'parabola’ that
cuts Pascal triangle passing only through entries greater than one of the same size. He proved
that N(t) = O(logt) for t > 2, where

N(t) := {m: m binomial coefficient, ¢ = m},
and made the following conjecture.

Conjecture 1 (Singmaster). The function N(t) is bounded.

This seems very difficult to prove, although Singmaster believed that N(¢) < 10 or 12 should
be the real margin. The best upper bound so far is:

B (logt)(logloglogt)
Nt =0 ( (loglogt)3 ) '

due to Kane [Kan’07], who improves on previous estimates of himself, Abbott, Erdos and
Hanson.

As for lower bounds, the results obtained so far are sporadic: N(2) =1, N(3) = N(4) =
N(5) = 2, N(6) = 3; if t < 10%® then N(t) = 6 for t = 120,210, 1540, 7140, 11628, 24310;
N(3003) = 8 since (30103) = (78) = (155) = ( ) the single known ¢ for which N(t) = 8.
Singmaster proved that N(t) > 6 infinitely often, but there are not known solutions of equations

N({t)=5orT.
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4 Odds and Ends in Pascal Triangle — Sierpinski Gasket

Recognition of primes is an extremely difficult problem. The Pascal triangle encodes enough
information to offer a genuine image of every positive integer. Looking at the entries in Pascal

Figure 3: The first 107 rows of Pascal triangle modulo 2 on the left and modulo 7 on the right
with residue classes drown in distinct colors.

triangle modulo n, for n = 2,3,4,5, ..., using colors to distinguish distinct residue classes, one
may see the face of a prime. It is striking to see the relative order in these images when n
is prime (two examples are shown in Figure [3]), as opposed to the ’chaos’ when n is highly
composite. A systematic study to discover some sort of 2-dimensional distribution is yet to be
done.

Pascal triangle modulo prime powers brought the attention of many mathematicians. Among
them are Legendre, Cauchy, Gauss, Kummer, Hermite, Hensel, Lucas, Granville [Gra’95].
Singmaster[Sng’80] studied the distribution of entries that are equal to zero in the Pascal
triangle modulo n. Actually, the most attention by far was given to the Pascal triangle mod-
ulo 2, the Sierpinski triangle. Glaisher [Glal899] proved that the odd numbers in any row
of the Pascal triangle is always a power of 2. For higher powers of 2 and similar problems
for other primes the reader is referred to Granville [Gra’92], [Gra’97], Huard et al. [HSW’97],
[HSW’98], Mihet[Mih’10], Rowland [Row’lla], [Row’11b] and Shevelev [She'1l]. Another in-
triguing property that relates the Pascal triangle modulo 2 with Fermat numbers was discovered
by Hewgill [Hew’77]. Let ¢(n,j) := (7;) (mod 2) and let F; := 22’ be the Fermat numbers for
j=0,1,... Then

S eln. )2 = FRF - B (4.1)
j=0

where dy,...,d, € {0,1} are the digits of n in base 2, that is n = dg + 2dy + --- + d,2" and
d. # 0. Reading the rows of the Pascal triangle modulo 2 as numbers written in base 2, we
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obtain the expressions from (4.1)). These numbers are:
1, 3, 5,15, 17, 51, 85, 255, 257, 771, ... (4.2)

The 32-nd is 232 — 1 = 4294967295, which is the product of 3, 5, 17, 257 and 65537, the
only known Fermat primes (cf. Cosgrave [Cos’99], Dubner and Gallot [DG’01]). Gauss proved
that the regular N-gons constructible with the ruler and the compass are those for which N
is a square free product of Fermat primes multiplied by a power of 2. Gardner [Gar'77] and
Watkins [CG’96], [KLS’01] observed that the known constructible N-gons with N odd are
those for which N is one of the first 32 numbers of the sequence (4.2)). Close resemblance to
Glaisher’s result are relations between binomial coefficients and Bernoulli numbers, such as

Y B <”) =B,.
=0
In a work of Lehmer [Leh’35], one finds:

n
6n + 3

Jj=0

and
- 6n+5 1
Bgi == .
jz:;) 6542 <6j+2> 3(67L+5)

Kummer and later Vandiver [Van’39] obtained similar relations modulo powers of primes, which
have various applications (cf. [Car’68]). Their congruences employ sums of binomial coefficients
with weights Euler numbers or Bernoulli numbers. Later, Carlitz (see [Car’68] and the refer-
ences therein) obtained more general results of this kind. Sierpinski triangle, first outlined in
mathematical form by Sierpinski [Sie’15] appeared beforehand in the XIII-th century Cosmati
mosaics in cathedrals of Rome region (see Wolfram [Wol'02, page 43]). There are several ways
to define the Sierpinski triangle (one of them being nondeterministi(ED. The most common
one is to start with a given triangle, delete from its interior the triangle determined by the
midpoints of the edges, then do the same thing with the three remaining triangles, and repeat
the process forever. The set of remaining points is the Sierpinski Gasket (Figure 3} left). It
is a basic type of fractal, and its dimension dg is easy to find: doubling its size, it replicates
three times the original triangle, so 3 = 2°S, and 6g = log3/log2 ~ 1.58496. Fraenkel and
Kontorovich [FK’07] recover Sierpinski triangle and its connection to binomial coefficients in
the context of a p-variety XY with a Nim-product and p-sieve with p prime. Sierpinski gasket
is a fertile ground of investigation, where one uses tools from analysis, pde, harmonic function
theory, number theory, see Ben-Bassat et al. [BST’99], Needleman et al. [NSTY’04], Ben-Gal
et al. [BSSY’06], Hinoa and Kumagai [HK’06], Teplyaev [Tep’07], DeGrado et al. [DRS’09],
image recognition and processing, theoretical or applied physics Huzler [Huz 08|, Daerden and
Vanderzande [DV’98], Pradhan et al. [PCRM’03|, Belrose [Bel’04].

2Take a triangle and label its vertices by the numbers 1, 2, 3. Pick a point P in its interior. Cast a 3-face
die. Draw the midpoint of the segment determined by P and the chosen vertex, and let P be this drawn point.
Repeat the process endlessly. The collection of drowned points is the Sierpinski triangle.
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5 Cousins of Pascal Triangle

Replacing the 1-s on the edges of the triangle with different sequences produces interesting
outcomes. Hosoya [Hos'76] proposes a Fibonacci triangle where each entry is the sum of the
previous two numbers in either the row or the column:

11 2 3 5 8
11 2 3 5 8
2 2 4 6 10 16
HF(c0) = 3 3 6 9 15 24
5 5 10 15 25 40
8 8 16 24 40 64

Actually, this is the multiplication table of Fibonacci numbers. Here the sum of entries aj
with j + k = n, are the first convolved Fibonacci numbers (see Koshy [Kos’01] and Klavzar
and Peterin [KP’07]). Falcén and Plaza [FP’07] study a Pascal 2-triangle using the k-Fibonacci
sequence, while Fahr and Ringel [FR’12] change the rule of insertion to get Fibonacci partition
triangles.

The sequences on the boundary can be quite arbitrary. Given u = (ug,...,u,—1) and
v = (Vo,...,Un—1), wWith ug = vo, put P(j,0) = u;, P(j,j) =v; for 0 <j <n and

P, k)=P(G—-1,k—1)+P(G—1,k), for2<j<n, 1<k<n-L

Then Py v = (P(j,k));k is the generalized Pascal triangle with u and v the generating edges.

One can also consider triangles with no boundary conditions. Steinhaus’ definition is as fol-
lows. Let x = (xg,...,7,_1) and 0% := (v +x1,...,Tp_2+Tp_1). Then, recursively 9°x = x,
O'x = 0%, and 9'x = 9"~ 'x. This generates the shrinking triangle S(x) = (x, 9x,...,0" 'x),
whose lines are shorter and shorter, the last one, "~ 'x, containing just one number. One pro-
blem is to characterize the x-s based on the shape of the produced triangles. Molluzzo [Mol’76]
and J. Chappelon [Cha’08] considered Steinhaus triangles with entries in Z,,. Most questions on
Steinhaus or generalized Pascal triangles refer to triangles with components in Fy, also named
Boolean triangles. Steinhaus [Ste’58], Harborth and Hurlbert [Har'72], [HH’05] estimate the
number of triangles that are balanced on the number of entries. Kutyreva and Malyshev [KM’06]
estimate the number of Boolean Pascal triangles of size n containing a positive proportion of
ones. Eliahou et al. [EH’04], [EH’05], [EMR’07] investigate binary sequences that generate
triangles with symmetries, while Brunat and Maureso [BM’11] give explicit formulae for the
number of these binary triangles having rotational and dihedral symmetries.

6 Euclid-Mullin sequences

The sequence P of prime numbers, like the Pascal arithmetic triangle, is also generated by a
simple rule (Eratostene’s sieve). Gallagher [Gal’76], [Gal’81] showed that primes appear like in
a Poissonian process. Goldston and Ledoan [GL’12] show Poisson distribution for individual
spacings between neighboring primes. The result is implicitly contained in an earlier work of
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Odlyzko, Rubinstein and Wolf [ORW’99] on jumping champions. All these results are proved
assuming the prime k-tuple conjecture of Hardy and Littlewood.

Subsequences of primes constructed recursively are natural places to look for symmetries.
If p1, po,..., pr is a list of known primes, then the integer p; - po - - p,r + 1 is not divisible by
any of p1, p2,..., Pr, SO it is either prime or divisible by a different prime. In any case, a new
prime p,+1 may be added to the list. Choosing various selection rules of primes from the set
of divisors of n,. = p1 - p2---p + 1, we get a large class of sequences of primes (cf. Caldwell
and Gallot [CG’01]). For example, one may work with spf(n,), the smallest prime factor of
n,, or gpf(n,), the greatest prime factor of n,. These choices produce the first Euclid-Mullin
sequence:

2,3,7,43,13,53,5,6221671,38709183810571, 139, 2801, 11,17, 5471, 52662739, . . . (6.1)
and the second Euclid-Mullin sequence:
2,3,7,43,139,50207, 340999, 2365347734339, 4680225641471129, . .. (6.2)

These sequences are not monotonic, but their members do not repeat. Also, they are infinite,
but since factoring large numbers is a very difficult task, only few terms of each of them are
known: the first 47 members of the first one and 13 of the second one. Mullin [Mul’63] asked
if the sequence ([6.1)) contains all primes, while Cox and Van der Poorten [CV’68] found a few
primes (5, 11, 13, 17, and a some others) that are absent from and conjectured that
there are infinitely many of them. This conjecture was proved by Booker [Boo'12]. Sloane’s
Encyclopedia of Sequences, started in 1964, today in the form of OEIS foundation [OEIS|, and
the references therein collect more information about the Euclid-Mullin sequences and some
others that are related to them.

7 Baby-Fractal sequences of numbers

Kimberling [Kim’95] defines a fractal sequence of numbers as one that contains itself as a proper
subsequence. For example, the sequence

1,1,2,1,3,2,4,1,5,3,6,2,7,4,8,1,9,5,10,3,11,6,12,2, 13,7, 14, 4, 15,8, . ..

is fractal because we get the same sequence after we delete from it the first appearance of
all positive integers. This sequence appears in a card sorting algorithm of Kimberling and
Shultz [KS’97], [Kim'97]. Simple examples of fractal sequences of numbers are constant or cyclic
sequences, or sequences that repeat periodically except for finitely many terms. We call them
baby-fractal sequences. The ‘3n+ 1’ type problems, iterated applications of absolute differences
(Thwaites [Thw’96a]) and the gpf-sequences produce examples galore of such sequences.

7.1 The ’3n+ 1’ conjecture

For any positive integer n, let C(n) = n/2, for n even and C(n) = 3n + 1, for n odd. For
example, starting with n = 7, repeated application of C(-) gives:

7,22,11,34,17, 52,26, 13, 40,20, 10,5, 16,8,4,2,1,4,2,1, . ..
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The "3n + 1’ conjecture asserts that for any n > 1, the sequence {C¥)(n)} _  eventually
enters into the cycle 1,4,2. The number of iterations necessary to reach the cycle may be large
even when n is small (for example, starting with n = 27, it takes 111 steps to reach 1). Collatz
[Cox’71] mentions the ’3n + 1’ problem for the first time in a mathematics journal, but the
problem entered the mathematical folklore in the early 1950’s. It was first posed by Collatz
in 1937 and independently by Thwaites (cf. Wirsching [Wir'98]). Thwaites [Thw’85] indicates
even the day and the hour of his discovery, while Collatz [Col’86] says that because he couldn’t
solve it, he did not publish anything, but the problem was publicized in seminars in different
countries after he told it to Helmut Hasse. In spite of numerous tries to solve it, the conjecture
is wide open. Wirsching [Wir’98|, Chamberland [Cha’03b] and Lagarias [Lag'11], [Lag'12] wrote
surveys on the problem. Functions analogue to C(-) and similar problems gather into a large
category, but a general statement on periodicity of the generated sequences looks similar to
one about a Turing machine, which falls beyond the undecidability line. This was proved by
Conway [Con’72], while Kurtz and Simon [KS’07] showed that a certain generalization of the
'(3n 4 1)’-problem is undecidable.

7.2 The greatest prime factor, a resourceful tool and a startling phenomenon

Let spf(n) be the smallest prime factor and gpf(n) the greatest prime factor of any integer n > 2.
These functions are simple to define but very deep in nature. In recent studies, mostly, the
gpf(+) function was employed and many generated sequences are like baby fractals, terminating
in surprising cycles. Back and Caragiu [BC’10] combined the Fibonacci growing rule with the
gpf(+) function in the role of a molifier. The new terms are obtained by a fixed combination
of neighbor terms. In this sense, the Fibonacci growing rule resembles exactly the Pascal-rule,
since F, = F,,_1+ F,,_o forn > 2 and Fy = 0, F; = 1. The general idea is to consider recursive
sequences of primes produced by the linear formula:

p; = gpt(ao + a1pj—1 + aspj_2 + - - + arpj_r). (7.1)

(Here, the coefficients ag, ..., a, are non negative integers.) The case r = 1 and ag > 0 where
investigated by Caragiu and Scheckelhoff [CS’06] and by Caragiu and Back [BC’09]. In this
case, they showed that when ag divides a; the generated sequences are always ultimately peri-
odic. Furthermore, based also on computer investigations, they conjecture that this property
characterizes all these sequences that do not necessarily satisfy the divisibility constrain on the
coefficients.

The gpf-Fibonacci sequences are those generated by p; = gpf(p;j—1 + p;—2), for j > 2. For
instance, if pg = 509, p; = 673, the first elements are:

509,673,197,29,113,71,23,47,7,3,5,2,7,3,5,2, . ..

Back and Caragiu [BC'10] proved that if the first two terms of a gpf-Fibonacci sequence are
distinct, then it eventually enters into the 4-cycle 7,3,5,2. Similarly, the gpf-Tribonacci se-
quences are given by p; = gpf(p;—1 + pj—2 + pj—3), for j > 3. Two examples of gpf-Tribonacci
sequences are:

9431, 563, 523, 809, 379, 59, 43, 37,139, 73,83,59,43,37, . ..... (7.2)
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and

31,13,7,17,37,61,23,11,19, 53, 83,31, 167, 281,479, 103, 863,

17,983,23,31,61,23,23,107,17,7,131,31,13,7,... (7.3)
Again, both sequences and enter into cycles. The length of the first one is 6, while
the length of the second one is 28. This phenomenon is widely spread, but these two cycles
are quite rare. In fact, most astonishingly, in the large class of gpf-Tribonacci sequences, only
4 distinct cycles where discovered so far. The other two have length 100 and 212. Back and
Caragiu observed that almost 99% of gpf-Tribonacci sequences with pg, p1, p2 < 1000 enter into
one of the longer cycles and the one of length 100 is encountered about three times more often
than the one of length 212. They state the following conjecture.

Conjecture 2 (Back, Caragiu [BC’10]). All recurrent sequences of primes defined by relation
(7.1) are ultimately periodic.

A multidimensional version of the problem with vector analogues of gpf-sequences is formu-
lated by Caragiu, Sutherland and Zaki [CSZ’11]. Using bounds on the spacings between consecu-
tive primes, Caragiu, Zaki and one of the authors [CZZ’12] found the rate of growth of the related
infinite order recurrent sequences of primes defined by ¢; = gpf(¢1 +¢2+---+¢;j—1), for j > 2.
They showed that g; = j/2 4+ O(j°"?).

7.3 Ultimately periodic sequences in Ducci games

Let d > 2 be a positive integer, let Ny be the set of sequences with nonnegative integer en-
tries that are periodic of period d, and define the application ¢4: Ng — Ny, ¢g(ag,a1,...) :=
(ag,at,...), where a’; = |a; —a;_1| for j > 0. Let a € Ny and denote by ||a|| the largest element
of a. Since in Ny there are finitely many sequences whose components are < ||a|, it follows
that starting with any a € Ny and applying ¢4 repeatedly, produces a sequence that eventually
enters into a cycle. The first interesting fact is that the length of each cycle is 1 if and only if
d is a power of 2. Thus,

¢éz) (a) =(0,0,...), for any k € N, a € Nyx and sufficiently large n. (7.4)

Pairing neighbor numbers placed around a circular table and taking absolute differences
recursively is just a different setting of the same problem. The original Ducci game begins
with only four numbers, and the evolution may be viewed in a Diffy box. Start by placing the
numbers on the corners of a square. Then, for the next generation, the absolute differences of
neighbor numbers are recorded on the middle of the edges. This produces a new square, on
which the operation is repeated. The iterated process eventually ends with 4 zeros. During
the action a graph is generated and one may consider a more developed game, by taking the
absolute differences of neighbor numbers on the other edges. In the same way, a similar game
may be played on different graphs. This leads tangentially to Golomb rulers problems, code
theory and even worldly applications (Malkevitch [Mal’12]).

The origin of the problem is not completely clear (cf. Thwaites [Thw’96b] and Behn et al.
[BKP’05]). The article of Ciamberlini and Marengoni [CM’37] seems to be the first published
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source on the subject. Ciamberlini and Marengoni begin their work by stating that Prof. Ducci
has communicated the problem to them long before. This might had happened in the XIXth
century, as both Enrico Ducci (1864-1940) and Corrado Ciamberlini (1861-1944) lived at the
time. Anyhow, Thomas et al. [CT’04] and [CST’05] place the first reference to Ducci games
at the end of the XIXth century. But for this, their cited support is Honsberger [Hon’9§],
whose single reference from page 73 attributes the cyclic quadruples game to an observation
made by professor E. Ducci in the 1930’s. The problem was discovered repeatedly, and several
independent proofs where given (see Ciamberlini and Marengoni [CM’37], Meyers [Mey’82],
Pompilli [Pom’96|], Thwaites [Thw’96b], Andriychenko and Chamberland [AC’00], Crasmaru
and the authors[CCZ’00], Chamberland [Cha’03a] and the references therein).

Following a note of Campbell [Cam’96] that advertized Thwaites conjectures [Thw’96a] and
being unaware of the other previous results, Cragmaru and the authors [CCZ’00] gave three
distinct proofs of problem , the second £100-conjecture of Thwaites. Regarding the cycles,
it turns out that the essence of the evolution function ¢ is captured by its restriction to Uy, the
subset of all the elements of Ny with components in {0,1}. The advantage is that the evolution
function restricted in this way is additive. Then the j-th component of ¢\IL(JZ) (ag, a1, ...) is equal

to
n

Z <n> a1 (mod 2).

=0

Moreover, one only needs to understand the transforms of the unitary sequence eg, whose
components are all equal to zero, except those of rank divisible by d, which are equal to one.
In this case we have

¢ (e0) = (Sa(n,0), Sa(n,—1), Sa(n,—2), ...) (mod 2), (7.5)

where

Sa(n,r)= > (Z)

1<k<n
k=r (mod d)

Expression is used in [CCZ’00] to investigate the general problem of finding the length of
the cycles for arbitrary d. It is shown that the periods (multiples of the length of cycles) depend
on the order of 2 modulo the largest odd factor of d. Short periods occur when d = 2P — 1 is
a Mersenne prime (47 such primes are known so far: 3, 7, 31, 127, 8191, ..., 243112609 _ 1)
In this case d is the length of the cycle. Long cycles may happen when d is prime and 2 is a
primitive root modulo d. (For example 3, 5, 11, 13, 19, 29, 37, ... and Artin’s conjecture states
that there are infinitely many such primes.) In these cases d(Q% — 1) is a period. Anyhow,
very long cycles do occur, because known partial results on Artin’s conjecture allow to deduce
that there are infinitely many primes d for which the length of the cycle is larger than 2d'/"

A more general evolution function is defined as follows. Let S = {0, 1}¢. Denote by p(x) the
circular rotation to the right of the vector x € S (e.g., for d = 5, p(1,0,1,0,0) = (0,1,0,1,0))
and -: § x § — § the componentwise addition modulo 2. Let s and aq,...,as be positive
integers and define 8: S — S by

0(x) = p(m)(x) .. .p(as)(x).
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Since #(x) has an accentuated chaotic character, Cragmaru [Cra’01] initiated the construction
of a cryptosystem based on the fact that there is an effective way to calculate 6(x). For s = 2,
ag = 0 and ap = 1 the function 0(x) replicates Ducci’s evolution function. There is an efficient
algorithm to calculate (™ (x) in O,(logn) steps (cf. [CCZ’00]). In the case 6(x) = xp(x), the
procedure is based on the formula

0™ (x) = x H p (TgRT) (x), x€S8, (7.6)
RCP(Rn)

where n =2 +2b ... 420 with [y < --- < l,, is the representation of n in base 2, and
Rn:{r:r52l" (mod d), 0 <r<d—1, for some Ogig,u}.

For any m € {1,...,d} denote

Un,a(m) =#{R C Rp: Z r=m (mod d)}.

reR

The representation and the fact that (0,...,0) and (1,...,1) € S are the only fixed
points of p(x) yield a criterion of periodicity, which states that a positive integer n is a period
for 6(x) = xp(x) if and only if the numbers vy 4(m), 1 < m < d, have the same parity (cf.
[CCZ’00, Corollary 3]). Furthermore, computer experiments show that when n is the length of
the shortest period, the numbers v, 4(m) are most of the time equal.

Conjecture 3 ( [CCZ’00]). Suppose d is prime, s is the order of 2 mod d, s is even and
n =d(2%/? = 1). Then

Vn’d(l) = Vn)d(Q) == Vn’d(d — 1) = Vn’d(d) + 2.

As consequence of Conjecture[3] we get precise values for the length of the periods of Ducci’s
evolution function §(x) = xp(x). The stretch of the initial iterations before the games enter
into the cycle and various results on the length of cycles in the n-Ducci game for particular
values and for n satisfying divisibility constrains were obtained by Webb [Web’82], Ludington
[Lud’88], Ehrlich [Ehr’90], Ludington-Young [LY’90] and [LY?99], Creely [Cre’88], Calkin et al.
[CST’05], Lidman and Thomas [LT°07], Brown and Merzel [BM’07]. Some generalizations of
the Ducci game with weights, with p-adic integers or with algebraic numbers are considered in
Chamberland [Cha’03a], Breuer [Bre’07] and [Bre’10], Baxter and Caragiu [BC'07], Caragiu,
Zaki and the second author [CZZ’11], while the close relation between the length of the cycles
and Pascal triangle modulo 2 is studied by Glaser and Schoffl [GS’95], and Breuer [Bre’98].

8 p-adic functions and convergents to e

The convergents of continued fractions of linear fractional transformations involving the Euler
number e and the special exponentials e?/" reveal augmented symmetries. Farther, running
across the sequence of denominators of convergents of the continued fraction of e, one finds
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that their divisibility properties exhibit attractive ’supercongruences’ modulo powers of primes
from a distinguished set B (cf. Berndt et al. [BKZ’12]), which are encoded by six remarkable
p-adic functions. These functions satisfy certain functional equations and are represented by
binomial coefficient series, whose coefficients also carry the signature of the entries from the
Pascal triangle.

Since 1873, when Hermite [Coh’06] proved that e is not an algebraic number, continued
fractions became an important instrument not only in diophantine approximation, but also in
finding the barrier between transcendence and algebraicity. There is a regularity in the con-
tinued fraction of e, more precisely e = [2,1,2,1,1,4,1,1,6,1,1,8,1,...]. Hurwitz (cf. Perron
[Per’54l, §33]) proved a general statement, which roughly asserts that if the terminal compo-
nents of the continued fraction for a number r consists of a few arithmetic progressions, then
(ar +b)/(er + d), were a,b,¢,d € Z and ad — be # 0 has the same property. For example, we
have:

1
505 = 2,3,2,3,1,2,1,3,4,3,1,4,1,3,6,3,1,6,1,3,8,3,1,8,1,3,.. ] (8.1)
and
—36e + 98
8 —310 — [5,2,5,1,2,5,1,2,1,5,4,5,1,4,5,1,4,1,5,6,5,1,6,5,1,6,1,5,...] . (8.2)

A similar result occurs for generalized continued fractions. Inspired by Angel’s [Ang’10] in-
vestigation of a family of generalized continued fractions that converge to rational numbers,
Gottfried Helms found, by computer experiments, a few examples that converge to rational
expressions involving e. In particular, the expressions that are analogous to relations (8.1)) and

(8.2) are:
Lo, 1234
2 —5 3+ 4+ 5+ 6+

and
—36e +98 3 4 5 6

T8e—212 O 6t 7+ 8+ 0t
The result of Hurwitz applies as well to some exponentials 7 = e®/", with a, h positive integers.
The following expressions were already known by Euler, Stieltjes and Hurwitz:

er = [1,(25 — 1)g — 1,1}‘;‘;1 =[1,¢-1,1,1,3¢—-1,1,1,5¢ — 1,1,1,7g — 1,.. ] (8.3)

for ¢ > 1, and

e = [1,(1+ 67)q + 37, (12 + 247)q + 6 + 12, (5 + 6)q + 2 + 35, 132, (8.4)

for ¢ > 0. Thakur [Tha’96] further extended Hurvitz’s result. He found the patterns dis-
played by the simple continued fractions for the analogues of the fractional transform (ae?/" 4
b)/(ce?/" + d) in function fields F,[t]. We remark that relations and are special, in
the sense that no such relations are known for e or for other powers of e. Also, the number of
arithmetic progressions needed to express the tail of and is small (three, respectively
five), but their fractional transforms may need many. For example, 94 arithmetic progressions
are needed to describe the tail of the continued fraction of 3e'/% — 1/3.
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Ramanujan, and later Davis, found best possible diophantine approximations of e%/¢ (see
Berndt et al. [BKZ’12] for a detailed description). Sondow and Schlam’s investigations [Son’06],
[SS’08], [SS’10], compare convergents of the simple continued fraction of e to the partial sums
of the Taylor series of e. Berndt, Kim and the second author [BKZ’12] proved that at most

O, ( log n) of the first convergents of e2/* may coincide with partial fractions of the series
o
97
2/a __
et = E T (8.5)
=0

Furthermore, as a consequence of a finer analysis in the case a = 2, they proved that equality
occurs only twice, which settles a conjecture of Sondow [Son’06]. This required the study of
the symmetries of the sequence {¢;} ez of the denominators of convergents. (Here, for j < 0
the definition of ¢; is made naturally, by the same recursive defining relation of the convergents
for j > 0.) An important role is played by their images modulo powers of primes selected from
a distinguished set of primes: B := {p: gj+6p = ¢; (mod p), for any j € Z} . There are other
equivalent ways to define the set B, whose first elements are:

B:= {3, 7,11,17,47,53,61,67,73,79,89,101,139, ... } .
Based in part on numerical data, in [BKZ’12] the following conjecture is made:

Conjecture 4 (Berndt, Kim, Zaharescu [BKZ’12]).
: p< 1
Iy #PEB: p<a} :

T—00 () e

The divisibility and the congruence properties of the sequence {g; };cz are captured by a few
functions f,.: Z — Z defined by f.(1) := gei—r, forl € Z. These functions are 1-Lipschitzian
with respect to the p-adic absolute value | - |, on the field of p-adic numbers Q,,, normalized by
Iplp = 1/p. Consequently, by a result of Mahler [Mah’58], they can be represented in a Pascal
series

x(x—1 T
o) = ano +ange+ans ™ (]) T
where _
J .
J .
ary = (=1)" (k) G = k),
k=0
that is, ar.o0 = fr(o) ={q—r, Qrq1 = fr(l) - fr(o) =q—r+6 —q—r, Or2 = fr(z) - 2fr(1) + fr(o) =
q—r+12 — 2q—r46 + G—r, ... This is reminiscent of continued fractions of Hurwitz type, whose

definition involves binomial coefficients and the iterated difference operator (cf. Perron [Per’54]
§32]). Of these functions, only six of them f,.(z) for r = 1,...,6 are essential. This sextuple
of functions is intrinsically linked by a few functional relations. Moreover, each f,.(z) has a
unique extension by continuity to a function defined on Z,, the ring of integers in Q,, and the

3 Unrelated to B, but based on similar heuristic arguments, the proportion of missed residue classes modulo
p by the set of factorials {1!,2!,...,p!} is conjectured by Richard K. Guy to have the same limit [CVZ’00].
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extensions satisfy the same functional equations. Among the properties of any function f,.(x)
that are reckoned as interesting to investigate, Berndt et al. [BKZ’12] highlight the natural
questions:

Question 3 (BKZ2012). (a) Is f.(x) differentiable? (b) Does fr(x) has any zeros except
certain trivial ones?

We remark that Question [3|a. is equivalent to the limit a,;/7 — 0 as j — oo.

9 A whopping class of fractals

The authors [CZ’12] consider triangles generated by a multiplicative rule. These are similar
to Pascal arithmetic triangle, except that the length of the new lines appears as decaying. In
reality, triangles may have any size, since we view them as chunks cut off from an infinite
triangle, if the first generating row is so. Let us consider the following function

ab
Z =——
(@:0) = (e, b2

Starting with a given sequence of integers, the subsequent generations are obtained as follows:
under two consecutive terms, say a and b, in the next generation put Z(a,b). For example,
Figure [4] shows the triangle of order n = 10 that starts on the first line with the sequence of
natural numbers. More precisely, this is triangle

Tn(n) :=={ajr: 1 <j<k<n}, (9.1)

where a1 =k for k> 1 and a1 = Z(ajk-1,a5k), for j > 1, k> 2.

1 2 3 4 5 6 7 8 9 10
2 6 12 20 30 42 56 72 90
3 2 15 6 35 12 63 20
6 30 10 210 420 84 1260
5 3 21 2 5 15
15 7 42 10 3
105 6 105 30
70 70 14
1 5
5

Figure 4: Triangle Tn(10), that is, the cut-off triangle of order 10 generated by the repetead
application of the Z(-,-) rule on the sequence of positive integers.

This is reminiscent of the Gilbreath’s Conjecture from 1958 (for which an incorrect proof
was given by Proth in 1878). In that case, the first line of the triangle from Figure [5| lists the
primes and the following generations are obtained by taking the absolute difference of neighbor
numbers and iterating this operation. The conjecture states that the left edge of that triangle
contains only ones.
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1 2 2 4 2 4 2 4 6
1 0 2 2 2 2 2 2
1 2 0 0 0 0 0
1 2 0 0 0 0
1 2 0 0 0
1 2 0 0
1 2 0
1 2
1

Figure 5: Triangle generated by iterated absolute differences staring with the sequence of the
first 10 primes.

Odlyzko [OdI'93] confirmed Gilbreath’s earlier checks and verified the conjecture for triangles
of order < 7(10'3). He had also offered heuristics to support it for analogue triangles produced
by starting with many other sequences whose spacings are sufficiently random and not too large.
The analogous property of the triangle from Figure [f] is that the maximal powers of all primes
that divide the numbers situated on the left edge are ones.

Conjecture 5. The left edge of the triangle Tn(n), forn > 1, contains only square free numbers.

Spectacular properties of the Z(-,-)-generated triangles are revealed by the scans of their
p-localized versions. Each of these renderings may be considered as a face of the corresponding
prime, an analogue facet of the Pascal arithmetic triangle modulo p. The collection of these
p-generated images build on the unique ’p-print face’ and inherent character. For instance,
for the prime p = 3, Figure [] is just a bit from this collection. There, darker colors indicate
higher powers. Notice that each number m that is part of the triangle carries a ’potential
energy’ proportional to the maximum power of p in m. This energy radiates in the subsequent
generations along the ’force lines’ on the left and on the right, and downward. Also, when
forces coming from opposite directions meet, their strength cancels like in a physical dynamic
clash. These carry flavors from the world of billiards, in which techniques involving Farey
series play a significant role in solving problems that involve successive insertions (see Boca
et al. [BGZ’03a), [BGZ’03b], [BZ’07], [BG’09], [Boca’10] and Alkan et al. [ALZ’06]). The
propagation of the potential energy continues endlessly as long as the sequence from the first
line does not terminate. This does not happen when the Z(-,-) rule is applied repeatedly on
the n-th row of the Pascal triangle. In that case, triangles are radically distinctive, changing
abruptly with the change of n. Looking at their localizations, even modulo the same p, one
hardly notices any similarity in figures for successive values of n. This is a result of mixing the
additive insertion rule used in the construction of the Pascal triangle with the multiplicative
fibers distilled by the Z(-,-) rule.

Let Tg(n) be the Z(-,-)-generated triangles, whose first line are the binomial coefficients:
%), (1): (5), .-, (). The 5-local renderings of T(n) with n = 24, 74,124, 374,624 show that
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they are entirely flat. This is a consequence of the fact that for these values of n, no binomial

coefficient (

for 0 < k < n, is divisible by 5.

),

Question 4. For fized p, are there infinitely many n > 1 for which the p-localized triangle

n
k
Tg(n) is completely flat?

We conclude our promenade by tempting the reader to explore patterns such as those that
start to reveal in Figure[6], where the constraints imposed by the small size of the triangle lead

to the appearance of a central darker figure which looks like a dwarf.

Figure 6: The 3-adic scan of order 64 of the Fibonacci—Z(-, -)-generated triangle.
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