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Abstract

We associate to a given 2-category K a new 2-category Bimon(K), whose 0-cells are the
bimonads in K. We show that this construction defines an endofunctor of the category
2-CAT of all 2-categories, which is represented by a certain 2-category Bimon.
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Introduction

Bimonads and Hopf monads have been introduced and investigated in [MW, W]. In this note
we are going to show that bimonads make sense in an arbitrary 2-category. Furthermore, for
any 2-category K we shall prove that the bimonads in K define a new 2-category Bimon(K), so
that the mapping

K→ Bimon(K)

is an endofunctor of 2-CAT, the (large) category of all 2-categories. In the main result of the
paper we shall prove that this 2-functor is representable, in the sense that there are a 2-category
Bimon and an isomorphism of 2-categories

[Bimon,K] ' Bimon(K),

which is natural in K. Here, [K,L] denotes the 2-category of all strict 2-functors between the
2-categories K and K. We also prove a similar result for Hopf monads.

1 Bimonads in a 2-category.

Throughout this paper K will denote a given 2-category. Recall that a 2-category is by definition
a category enriched in the category of all categories. In other words, a 2-category is given by
a class of objects (0-cells), morphism between objects (that are called 1-cells) and morphism
between morphisms (that are called 2-cells). The 0-cells will be denoted by capital letters X, Y ,
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X ′, etc. The 1-cells will also be denoted by capital letters, e.g. F : X −→ X ′. We will say that
X and Y are the source and the target of F . For 2-cells we will use the notation α : F =⇒ F ′.
The 1-cells F and F ′ will be called the source and the target of α. To each 0-cell corresponds
an 1-cell IdX , the identity of X. Similarly, for every 1-cell F we can speak about the identity
of F , which is a 2-cell denoted by IdF .

As in an usual category 1-cells can be composed. If there is no danger of confusion, for the
composition F ◦G of two 1-cells we will write FG. On the other hand, 2-cells can be composed
horizontally and vertically with respect to the operations that will be denoted by ◦ and •. To
simplify the notation we shall write Fα and αG instead of IdF ◦ α and α ◦ IdG, respectively
(of course, whenever these compositions make sense). For details on 2-categories the reader is
referred to [LR, S1, S2].

We start by recalling some well-known definitions that we will need later on.

1.1 (Monads in K.) A monad in K consists of a 0-cell X, an 1-cell T : X → X and a pair
of 2-cells m : TT ⇒ T and u : IdX ⇒ T (the multiplication and the unit of the monad), such
that the following equalities hold

m • Tm = m •mT, (1)

m • Tu = IdT = m • uT. (2)

A morphism between two monads (X,T,m, u) and (X ′, T ′,m′, u′) consists of a pair (F, σ),
where F : X → X ′ is an 1-cell and σ : T ′F =⇒ FT is a 2-cell such that the following identities
hold:

Fm • σT • T ′σ = σ •m′F, (3)

σ • u′F = Fu. (4)

1.2 (Comonads in K.) Comonads in a 2-category are defined by duality. Therefore a comonad
consists of a 0-cell X, an 1-cell S : X → X and a pair of 2-cells δ : S ⇒ SS and ε : S ⇒ IdX
(the counit and the comultiplication of the comonad), such that the following equalities hold:

Sδ • δ = δS • δ, (5)

εS • δ = IdS = Sε • δ. (6)

A morphism of comonads from (X,S, δ, ε) to
(
X ′, S′, δ′, ε′

)
is a pair (G, τ), where G : X → X ′

is an 1-cell and τ : S′G⇒ GS is a 2-cell such that the following identities hold:

τS • S′τ • δ′G = Gδ • τ , (7)

Gε • τ = ε′G. (8)

1.3 (Bimonads in K.) To define a bimonad in K we need a monad (X,H,m, u) and a
comonad (X,H, δ, ε) in K. Note that these structures share the same 0-cell X and the same 1-
cell H. Of course, in addition these structures has to be compatible in a certain sense. In order
to state the compatibility condition we need the definition of entwining maps. Let (X,T,m, u)
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and (X,S, δ, ε) be a monad and a comonad, respectively. A 2-cell λ : TS ⇒ ST is an entwining
structure if the following four conditions hold:

Sm • λT • Tλ = λ •mS, (9)

Sλ • λS • Tδ = δT • λ, (10)

εT • λ = Tε, (11)

λ • uS = Su. (12)

Now we can say what a bimonad in K is. Namely, the sextuple (X,H,m, u, δ, ε) is a bimonad if
(X,H,m, u) is a monad, (X,H, δ, ε) is a comonad and λ : H2 ⇒ H2 is an entwining structure
that satisfy the following conditions:

i) The unit u is a morphism of comonads from (X, IdX , IdIdX , IdIdX ) to (X,H, δ, ε), i.e.

δ • u = u ◦ u, (13)

ε • u = IdIdX . (14)

ii) The counit ε is a morphism of monads from (X,H,m, u) to (X, IdX , IdIdX , IdIdX ), i.e.

ε •m = ε ◦ ε. (15)

Note that the condition expressing that ε is compatible with the unit u is equivalent to
(14). Consequently, it was omitted.

iii) The following identity hold:

δ •m = Hm • λH •Hδ. (16)

A pair (F, σ) is a morphism of bimonads from (X,H,m, u, δ, ε, λ) to
(
X ′, H ′,m′, u′, δ′, ε′, λ′

)
if it is a morphism of monads and comonads, and the following identity holds:

Fλ • σH •H ′σ = σH •H ′σ • λ′F. (17)

1.4 (The 2-category Bimon(K).) Let K be a 2-category. We are going to define a new 2-
category, whose 0-cells are the bimonads in K. By construction, the 1-cells in Bimon (K) are the
morphisms between arbitrary bimonads in K. A 2-cell α : (F, σ) =⇒ (G, τ) in Bimon(K), where

(X,H,m, u, δ, ε, λ)
(F,σ) //

(G,τ)
//
(
X ′, H ′,m′, u′, δ′, ε′, λ′

)
,

is a 2-cell α : F =⇒ G in K such that

αH • σ = τ •H ′α. (18)

To simplify the notation, we will write (co)monads and bimonads as pairs, whose components
are the corresponding 0-cells and 1-cells (we will omit all other underlying structures). For
example, if there is no danger of confusion, the monad (X,T,m, u) will be denoted (X,T ).
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By definition, the composition of two morphisms in Bimon(K)

(X,H)
(F,σ) // (X ′, H ′)

(G,τ) // (X ′′, H ′′) (19)

is given by:
(G, τ) ◦ (F, σ) = (GF,Gσ • τF ) . (20)

Clearly, for every bimonad (X,H), the pair (IdX , IdH) is a morphism of bimonads, that will
be called the identity of (X,H). For the 2-cells α and β in Bimon (K)

(X,H)

(F,σ) ))

(F ′,σ′)
55

⇓ α (X ′, H ′)

(G,τ) ))

(G′,τ ′)
55

⇓ β (X ′′, H ′′) , (21)

we define the horizontal composition β ◦ α : GF ⇒ G′F ′ as follows:

β ◦ α := βF ′ •Gα = G′α • βF. (22)

Note that the second equality holds as K is a 2-category, so the above definition makes sense.
Now, let us consider the 2-cells α : (F, σ) =⇒ (F ′, σ′) and α′ : (F ′, σ′) =⇒ (F ′′, σ′′) in
Bimon(K), where (F, σ), (F ′, σ′) and (F ′′, σ′′) are some morphisms of bimonads as in the
figure below:

(X,H)

(F,σ)

!!

(F ′′,σ′′)

==
(F ′,σ′) // (X ′, H ′) . (23)

We define the vertical composition of α′ and α in Bimon (K) to be α′•α (the vertical composition
of α′ and α regarded as 2-cells in K). The identity 2-cell of (F, σ) is by definition IdF .

Theorem 1.5 The above constructions define a 2-category that we shall denote by Bimon (K) .

Proof: We must check that the above constructions are well-defined. First we prove that,
for two morphisms of bimonads as in (19), the composition (GF,Gσ • τF ) is also a mor-
phism of bimonads from (X,H) to (X ′′, H ′′) . Let m,m′ and m′′ denote the multiplications
in (X,H) , (X ′, H ′) and (X ′′, H ′′), respectively. We have

(Gσ • τF ) •m′′GF = Gσ •Gm′F • τH ′F •H ′′τF

= GFm •GσH •GH ′σ • τH ′F •H ′′τF

= GFm •GσH • τFH •H ′′Gσ •H ′′τF

= GFm • [(Gσ • τF )H] • [H ′′ (Gσ • τF )] .

Note that for the first and the second equalities we used the relation (3), written for τ and
σ, respectively. To deduce the last two equalities we used the interchange law in K. The
compatibility with the units u, u′, u′′ follows by the computation below:

(Gσ • τF ) • u′′GF = Gσ • [(τ • u′′G)F ] = Gσ •Gu′F = G (σ • u′F ) = GFu.
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By duality one shows that (GF,Gσ • Fτ) is a morphism of comonads. In order to prove that
this pair is a morphism of bimonads we still have to check that the identity (17) holds. Indeed,

[(Gσ • τF )H] • [H ′′ (Gσ • τF )] • λ′′GF (A)
= GσH •GH ′σ • τH ′F •H ′′τF • λ′′GF
(B)
= GσH •GH ′σ •Gλ′F • τH ′F •H ′′τF

(C)
= GFλ •GσH •GH ′σ • τH ′F •H ′′τF

(D)
= GFλ •GσH • τFH •H ′′Gσ •H ′′τF

= GFλ • [(Gσ • τF )H] • [H ′′ (Gσ • τF )] .

In the above computations for (A) and (D) we used the interchange law, while (B) and (C) are
consequences of (17), written for τ and σ, respectively.

We now take α and β to be 2-cells in Bimon(K) as in (21). We claim that β ◦ α is a 2-
cell between (GF,Gσ • τF ) and (G′F ′, G′σ′ • τ ′F ′), that is G′α • βF = βF ′ •Gα satisfies the
condition (18). Indeed, we have:

(β ◦ α)H • (Gσ • τH)
(A)
= G′αH • βFH •Gσ • τF
(B)
= G′αH •G′σ • βH ′F • τF

(C)
= G′σ′ •G′H ′α • τ ′F •H ′′βF

(D)
= G′σ′ • τ ′F ′ •H ′′G′α •H ′′βF

= (G′σ′ • τ ′F ′) •H ′′ (β ◦ α) .

In the above computation we used the definition of the horizontal composition in Bimon (K) to
deduce (A) and (D). In (B) and (D) we also used the interchange law. Finally, we got (C) by
applying the relation (18) twice.

Let α : (F, σ)⇒ (F ′, σ′) and α′ : (F ′, σ′)⇒ (F ′′, σ′′) be 2-cells in Bimon (K), where (F, σ),
(F ′, σ′) and (F ′′, σ′′) are morphisms of bimonads with the same source and the same target.
Our aim now is to check that α′ • α is a 2-cell in Bimon (K), i.e.

((α′ • α)H) • σ = σ′′ • (H ′′ (β • α)).

Since α′ and α are 2-cells in Bimon (K), we get:

((α′ • α)H) • σ = α′H • αH • σ = α′H • σ′ •H ′α = σ′′ •H ′α′ •H ′α = σ′′ • (H ′ (α′ • α)) .

Obviously, (IdX , IdH) satisfies the axioms of the identity 1-cell in a 2-category, for any bimonad
(X,H). Moreover, it is easy to see that and IdF is the identity 2-cell of (F, σ), for every bimonad
morphism (F, σ).

In order to show that the composition of 1-cells in Bimon (K) is associative we take three
composable morphisms (F, σ), (G, τ) and (H, δ). By applying the relation (20) four times we
get

(H, δ) ◦ [(G, τ) ◦ (F, σ)] =(H, δ) ◦ (GF,Gσ • τF ) = (HGF,HGσ •HτF • δGF )

= (HG,Hτ • δG) ◦ (F, σ) = [(H, δ) ◦ (G, τ)] ◦ (F, σ).
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The horizontal composition in Bimon (K) is also associative. To check that we take the
2-cells α and β as in (21). If γ : (H, δ) =⇒

(
H ′, δ′

)
is another 2-cell such that γ ◦ (β ◦ a) exists,

then

(γ ◦ β)◦α = (γG′ •Hβ)F ′•HGα = γG′F ′•HβF ′•HGα = γG′F ′•H (βF ′ •Gα) = γ◦(β ◦ α) .

The vertical composition in Bimon (K) is associative, as it coincides with that one in K. It
remains to show that interchange law holds in Bimon (K). We take the 2-cells α and β as in
(21). We assume that α′ and β′ are other 2-cells in Bimon (K) such that β′ ◦ α′, α′ • α and
β′ • β make sence. Therefore, the source of α′ and β′ are F ′ and G′, respectively. Let F ′′ and
G′′ be their targets. Since K is a 2-category, the interchange law holds, so we have

G′α′ • βF ′ = β ◦ α′ = βF ′′ •Gα′.

Now we can prove that the interchange law holds in Bimon (K) too. Indeed, by the definition
of the horizontal composition in Bimon (K) , and the fact the vertical composition in this 2-
category coincides to that one K, we get(

β′ • β
)
◦ (α′ • α) =

[(
β′ • β

)
F ′′] • [G (α′ • α)] = β′F ′′ • βF ′′ •Gα′ •Gα

= β′F ′′ •G′α′ • βF ′ •Gα =
(
β′ ◦ α′) • (β ◦ α) .

In conclusion we have just proved that Bimon(K) is a 2-category.

1.6 (The 2-functor Bimon(F).) Our goal now is to show that the construction of Bimon (K)
is functorial in K. More precisely, if 2-CAT denotes the (large) category of 2-categories with
strict 2-functors as morphisms, then the mapping

K→ Bimon (K)

defines an endofunctor of 2-CAT. We have already defined Bimon(−) on the objects of 2-CAT.
It remains to construct Bimon(F), for every strict 2-functor F : K→ L.

Recall that a 2-functor F as above is given by a map F0 : K0→ L0 and a family of functors
(FX,Y )X,Y ∈K0

where, for all 0-cells X and Y ,

FX,Y : K (X,Y )→ L (F0 (X) ,F0 (Y )) .

The family (FX,Y )X,Y ∈K0
is assumed to be compatible with the composition of 1-cells and with

the identity 1-cells. Therefore, to each 1-cell f : X → Y corresponds a unique 1-cell FX,Y (f) ,
whose source and target are F0 (X) and F0 (Y ) , respectively. It will be denoted by F1 (f).
Analogously, if α : f =⇒ g is a 2-cell such that f and g have the same source and the same
target, then we denote the 2-cell FX,Y (α) : F1 (f) =⇒ F1 (g) by F2 (α) .

We are going to associate to F a 2-functor

Bimon (F) : Bimon (K)→ Bimon (L) .

We first define F := Bimon (F) on 0-cells. Let (X,H,m, u, δ, ε, λ) be a bimonad. We set

F0 (X,H,m, u, δ, ε, λ) := (F0 (X) ,F1 (H) ,F2 (m) ,F2 (u) ,F2 (δ) ,F2 (ε) ,F2 (λ)) .
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It is not difficult to see that this is a bimonad in L. For a morphism of bimonads in K, or
equivalently an 1-cell (F, σ) : (X,H)→ (X ′, H ′) in Bimon (K), we define:

F1 (F, σ) := (F1 (F ) ,F2 (σ)) .

Hence F1 (F ) : F0 (X)→ F0 (X ′) and F2 (σ) : F1 (H ′) ◦ F1 (F ) =⇒ F1 (F ) ◦ F1 (H). One shows
easily that F (F, σ) is a morphism of bimonads in L from F (X,H) to F (X ′, H ′).

For a 2-cell α : (F, σ) =⇒ (G, τ) in Bimon (K), we put:

F2 (α) = F2 (α) .

Clearly, F2 (α) : F1 (F ) → F1 (G) is a 2-cell in L. In fact by an easy computation one checks
that F2 (α) is a 2-cell in Bimon (L) from F (X,H) to F (X ′, H ′) .

Theorem 1.7 The above data define a 2-functor

Bimon (F) : Bimon (K)→ Bimon (L) .

Proof: We have to show that

F(X,H),(X′,H′) : Bimon ((X,H) , (X ′, H ′))→ Bimon ((F0 (X) ,F1 (H)) , (F0 (X ′) ,F1 (H ′)))

is a functor, and that the family of these functors is compatible with the composition of 1-cells.
In other words F is compatible with the compositions of 1-cells, and with horizontal and vertical
compositions of 2-cells. Let (F, σ) and (G, τ) be 1-cells as in (19). Their composition is defined
by the formula (20), so F maps (G, τ) ◦ (F, σ) to the morphism (F1 (GF ) ,F2 (Gσ • τF )) . Since
F is a 2-functor from K to L , we get

(F1 (GF ) ,F2 (Gσ • τF )) = (F1 (G) ◦ F1 (F ) ,F1 (G)F2 (σ) • F2 (τ)F1 (F ))

= (F1 (G) ,F2 (τ)) ◦ (F1 (F ) ,F2 (σ)) .

This means that F is compatible with the composition of 1-cells. In order to prove the compat-
ibility of F with the horizontal composition of 2-cells we take α and β to be 2-cells as in (21).
In view of (22) and taking into account that F is a 2-functor, we have

F2 (β ◦ α) = F2 (βF ′ •Gα) = F2 (βF ′)•F2 (Gα) = F2 (β)F1 (F ′)•F1 (G)F2 (α) = F2(β)◦F2(α).

Suppose that α and α′ are 2-cells that can be composed vertically. Then, since F is a 2-functor,

F2 (α • α′) = F2 (α • α′) = F2 (α) • F2 (α′) .

By construction F maps identity cells to identity cells, so F is a strict 2-functor indeed. To
conclude the proof of the theorem we have to show that

Bimon (F ◦G) = Bimon (F) ◦Bimon (F) and Bimon (IdK) = IdBimon(K).

Both relations are immediate consequences of the definitions.
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2 The main result.

In this section we prove our main result, stating that the 2-functor Bimon(−) is representable.
We will also establish a similar result for Hopf monads in a 2-category.

2.1 (The 2-category Bimon.) An useful method to produce new examples of 2-categories
is explained in [S2]. We will follow the terminology from loc. cit. To every 2-category K one
associates in a canonical way a computad UK (the underlying computad of K, cf. [S2, p. 538]).
We obtain a functor U from 2-CAT to the category of computads. This functor has a left
adjoint F, which maps a computad Γ the free 2-category FΓ of Γ, see [S2, p. 538]. Therefore,
for every computad Γ and every 2-category K there is an one-to-one correspondence between
the morphisms of computads Γ→ UK and the strict 2-functors FΓ→ K.

Furthermore, an arbitrary 2-category K can by quotient out modulo a congruence relation R.
One obtains a new 2-category K/R such that the 0-cells and 1-cells in K and K/R are identical,
but the 2-cells in the latter 2-category are the equivalence classes of those in the former one.
By construction, for every 2-category L, there is an one-to-one correspondence between the
2-functors K/R → L and the functors K → L that maps equivalent 2-cells in K to the same
2-cell in L.

We apply this strategy to construct the 2-category Bimon. For, we start with the computad
Γ that has an unique 0-cell X0 and an unique 1-cell H0 : X0 → X0. The 2-cells of Γ are:

m0 : H2
0 =⇒ H0, u0 : IdX0 =⇒ H0, δ0 : H0 =⇒ H2

0 , ε0 : H0 =⇒ IdX0 , λ0 : H2
0 =⇒ H2

0 .

On the free 2-category FΓ we impose the relations:

m0 • (H0m0) ≡ m0 • (m0H0) ,

(H0δ0) • δ0 ≡ (δ0H0) • δ0,

λ0 • (m0H0) ≡ (H0m0) • (λ0H0) • (H0λ0) ,

(δ0H0) • λ0 ≡ (H0λ0) • (λ0H0) • (H0δ0) ,

m0 • (H0u0) ≡ 1H0 ≡ m0 • (u0H0) ,

(H0ε0) • δ0 ≡ 1H0 ≡ (ε0H0) • δ0,

λ0 • (u0H0) ≡ H0u0,

λ0 • (H0ε0) ≡ ε0H0,

δ0 •m0 ≡ (H0m0) • (λ0H0) • (H0δ0) .
We defineR to be the congruence generated by the above nine relations, and we set Bimon :=

FΓ/R. The equivalence classes of the 2-cells m0, u0, etc. will be denoted by m̂0, û0, etc.

2.2 (The 2-category [K,L].) It is well known that, for every 2-categories K and L, there is a
2-category [K,L] whose 0-cells are the strict 2-functors F : K→ L. The 1-cells of [K,L] are called
transformations. By definition, a transformation T : F −→ G is a pair T = ({TX}X∈K0

, {τF }F∈K1
)

such that, for any X in K0 and any F : X → Y,

TX : F0 (X)→ G0 (X) and τF : G1 (F ) ◦ TX =⇒ TY ◦ F1 (F )

are an 1-cell and a 2-cells in L, respectively. The 2-cells τF are natural in F , i.e. for α : F → F ′

we have the following three relations:

TY F2 (α) • τF = τF ′ •G2 (α)TX , (24)

τF ′F = τF ′F1 (F ) •G1 (F ′) τF , (25)

τ IdX = IdTX
. (26)
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Let us assume that T = ({TX}X , {τF }F ) and T′ =
(
{T ′

X}X , {τ
′
F }F

)
, where

T : F =⇒ F′ and T′ : F′ =⇒ F′′. (27)

Then, T′ ◦T is the transformation whose first component is the family of 1-cells (T ′
XTX)X∈K0

.
The second component of T′ ◦ T is the family {γF }F∈K1

, where γF is the 2-cell

γF = (T ′
Y τF ) • (τ ′FTX) . (28)

The 2-cells in [K,L] are called modifications. If T = ({TX}X , {τF }F ) and S = ({SX}X , {σF }F )
are two transformations between the 2-functors F and G then a modification Γ : T ⇒ S is a
family of 2-cells {ΓX}X∈K0

, where ΓX : TX ⇒ SX . The 2-cells ΓX are assumed to satisfy the
following identity:

ΓY F1 (F ) • τF = σF •G1 (F ) ΓX (29)

Horizontal composition of two modifications is defined using the horizontal pointwise composi-
tion in K. componentwise. Therefore, if we take two modifications

F

T
&&

S

88⇓ Γ F′
T′

''

S′

77⇓ Γ′ F′′, (30)

then Γ′ ◦ Γ = {Γ′
X ◦ ΓX}X∈K0

. Similarly, for the transformations T, T′ and T′′, with the same
source and the same target, and the modifications

Γ : T→ T′ and Σ : T′→ T′′ (31)

one defines the vertical composition by:

Γ • Σ = {ΓX • ΣX}X∈K0
. (32)

The identity 1-cell of a 2-functor F is the pair (
{
IdF(X)

}
X∈K0

,
{
IdF(F )

}
F∈K1

) . The identity

of a transformation T = ({TX}X , {τF }F ) is the family {IdTX
}X∈K0

.

2.3 (The 2-functor Θ(K) : [Bimon,K]→ Bimon(K).) On 0-cells (i.e. 2-functors) the 2-functor
Θ(K) is defined by

Θ (K)0 (F) =
(
F0 (X0) ,F1 (H0) ,F2(m̂0),F2 (û0) ,F2(δ̂0),F2 (ε̂0) ,F2(λ̂0)

)
.

Since (X0, H0, m̂0, û0, δ̂0, ε̂0, λ̂0) is a bimonad in Bimon and F is a strict 2-functor it follows
that Θ (K)0 (F) is a bimonad on K.Let T be a transformation between F and S. Since Bimon
has a unique 0-cell X0, the first component of T is a family with one element, namely the 1-cell
TX0

. The second component of T is a family indexed by the 1-cells of Bimon, which are Tn0
= T0 . . . T0 (n-factors). Hence T = (TX0

, {τTn
0
}n∈N). We define

Θ (K)1 (T) = (TX0
, τT0

) .
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Let us show that Θ (K)1 (T) is a morphism of bimonads between Θ (K)0 (F) and Θ (K)0 (S) .
Since the family

{
τTn

0

}
n

is natural, in view of (24), we get:

TX0
F2(m̂0) • τT 2

0
= τT0

•G2(m̂0)TX0
.

On the other hand, by (25),

τT 2
0

= (τT0
F1 (T0)) • (S1 (T0) τT0

) .

Since the multiplications of (F0 (X0) ,F1 (H0)) and (G0 (X0) ,G1 (H0)) are F2(m̂0) and G2(m̂0),
it follows that Θ (K)1 (T) satisfies the condition (3) for α = û0, one proves that:

τT0
•G2 (û0)TX0

= TX0
F2 (û0) • τ IdX0

Since τ IdX0
= IdTX0

, cf. (26), and F2 (û0) and S2(δ̂0) are the units of Θ (K)0 (F) and Θ (K)0 (S)
we deduce that Θ (K)1 (T) is compatible with the units of these bimonads. In conclusion,
Θ (K)1 (T) is a morphism of monads. One proves Θ (K)1 (T) is a morphism of comonads that
satisfies the relation (17). Thus Θ (K)1 (T) is a morphism of bimonads. We take now Γ : T→ S
to be a modification, where T and S have the same target F and source G. In Bimon there is
only one 0-cell X0. Hence Γ is a family with one element ΓX0

: TX0
→ SX0

, where TX0
and SX0

are the 2-cells in K that define T and S, respectively. We now set:

Θ (K)2 (Γ) = ΓX0 .

Clearly the condition (29) written for the modification Γ and the condition (18) written for
α = ΓX0 are equivalent. Therefore, Θ (K)2 (Γ) is a 2-cell in Bimon. We claim that Θ (K)1

is compatible with the composition of transformations. Indeed, let T and T′ be two trans-

formations such that T′◦ T exists. If T =
(
TX0

,
{
τTn

0

}
n∈N

)
and T′ =

(
T ′
X0
,
{
τ ′Tn

0

}
n∈N

)
,

then T′ ◦ T is the pair whose first component is T ′
X0
TX0

and second component is the family{
T ′
X0
τTn

0
• τ ′Tn

0
T
}
n
. We deduce that

Θ (K)1 (T′ ◦ T) =
(
T ′
X0
TX0

, (T ′
X0
τT0

) • (τ ′T0
TX0

)
)

= (T ′
X0
, τ ′T0

) ◦ (TX0
, τT0

)

= Θ (K)1 (T′) ◦Θ (K)1 (T) .

Let us prove that Θ (K)2 is compatible with the horizontal and vertical composition. If Γ and
Σ are two modifications defined by ΓX0

and ΣX0
, respectively, then:

Θ (K)2 (Γ ◦ Σ) = ΓX0
◦ ΣX0

= Θ (K)2 (Γ) ◦Θ (K)2 (Σ) .

The compatibility with the vertical composition is proven similarly. Clearly, Θ (K) maps identity
cell to an identity cell, so we have just proven that Θ (K) is a strict 2-functor.

2.4 (The 2-functor Λ(K) : Bimon(K)→ [Bimon,K].) Our goal now is to construct an inverse
of Θ(K). On objects Λ(K) is defined as follows. If (X,m, u, δ, ε, λ) is a bimonad in K, then

X0 7→ X, H0 7→ H, m0 7→ m, u0 7→ u, δ0 7→ δ, ε0 7→ ε and λ0 7→ λ
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define a morphism of computads from Γ0 to UK. By the universal property of the free 2-category,
there is a unique 2-functor F′ : FΓ0 → K that lifts the above morphism of computads. Since
(X,H) is a bimonad, F′ factors through a 2-functor F from Bimon := FΓ0/R to K, cf. the
definition of Bimon. Hence F is uniquely defined by the relations:

F0(X0) = X, F1(H0) = H, F2(m0) = m, F2(û0) = u, F2(δ̂0) = δ, F2(ε̂0) = ε, F2(λ̂0) = λ.

We set Λ(K)0 (X,H) = F. For a morphism of bimonads (F, σ) : (X,H)→ (X ′, H ′) we define:

Λ(K)1 (F, σ) : Λ(K)0 (X,H)→ Λ(K)0 (X ′, H ′)

as follows. Let F := Λ(K)0 (X,H) and F′ := Λ(K)0 (X ′, H ′) . We need a transformation from
F to F′. Since X0 is the unique 0-cell of Bimon and the 1-cell of this 2-category are Hn

0 , a

transformation from F to F′ is a pair
(
T,
{
τTn

0

}
n∈N

)
. We take T := F , and we set τ IdX0

= IdT

and τT0
= σ. Then, for n ≥ 2, we define inductively τTn

0
by using the relation (25). It is routine

to check that
(
T,
{
τTn

0

}
n∈N

)
is a transformation, indeed. Thus, we define:

Λ(K)1 (F, σ) :=
(
F,
{
τTn

0

}
n∈N

)
It is remains to construct Λ(K)2. Let α : (F, σ) ⇒ (F ′, σ′) be a 2-cell in Bimon (K). We are
looking for a transformation from Λ(K)1 (F, σ) to Λ(K)1 (F ′, σ′), which has to be a 2-cell in K
with source F and target F ′. Obviously, we take

Λ(K)2 (α) = α.

By definitions it is clear that Λ(K)2 (α) is a 2-cell in [Bimon,K] . If (F, σ) and (F ′, σ′) are two
morphism of bimonads that can be composed, then

Λ(K)1 ((F ′, σ′) ◦ (F, σ)) = Λ(K)1 (F ′F, F ′σ • σ′F ) =
(
F ′F,

{
τTn

0

}
n

)
where τT0 = F ′σ • σ′F. On the other hand

Λ(K)1 (F, σ) =
(
F,
{
γTn

0

}
n

)
and Λ(K)1 (F ′, σ′) =

(
F ′,
{
γ′Tn

0

}
n

)
,

where γ′T0
= σ′ and γT0

= σ. Note that all τTn
0
, γTn

0
and γ′Tn

0
are uniquely determined by

τT0
, γT0

and γ′T0
, cf. (25). As(
F ′,
{
γ′Tn

0

}
n

)
◦
(
F,
{
γTn

0

}
n

)
=
(
F ′F,

{
(F ′γTn

0
) • (γ′Tn

0
F )
}
n

)
,

in view of the foregoing remarks, if follows that Λ(K)1 is compatible with the compositions of
morphism of bimonads. Since Λ(K)2 (α) = α, it is clear that Λ(K)2 is compatible with the
horizontal and vertical compositions. The compatibility with the identity cells is also obvious,
so Λ(K) is a strict 2-functor.
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Theorem 2.5 The 2-functors Λ(K) and Θ(K) are inverses each other, and they are natural in
K. In particular, the 2-category Bimon represents the functor

Bimon(−) : 2-CAT→ 2-CAT.

Proof: Let us show that Θ(K)◦ Λ(K) is the identity functor of Bimon(K). If (X,H) is a bimonad
on K, we have:

[Θ (K)0 ◦ Λ(K)0] (X,H) = Θ (K) (F) = (F0 (X0) ,F1 (H0)) ,

where F = Λ(K)0 (X,H) . But F is the unique 2-functor with source Bimon and target K such
that F0 (X0) = X and F1 (H0) = H. If m is the multiplication of (X,H) then F2(m̂0) = m, by
the definition of F = Λ(K)0 (X,H) . Similar relation hold for the unit, comultiplication, counit
and entwining structure. This shows that

Θ (K)0 ◦ Λ(K)0 = IdBimon(K)0

We now take a morphism (F, σ) of bimonads.

[Θ (K)1 ◦ Λ(K)1] (F, σ) = Θ (K)1

(
F,
{
τTn

0

}
n

)
= (F, τT0

) ,

where
{
τTn

0

}
n

is uniquely defined such that τT0 = σ. Hence Θ (K)1 is a left inverse of Λ(K)1.
The identity

Θ (K)2 ◦ Λ(K)2 = IdBimon(K)2

is trivial, as both Θ (K)2 and Λ(K)2 map a 2-cell to itself. On the other hand, if F : Bimon→ K
is a 2-functor then:

[Λ(K)0 ◦Θ (K)0] (F) = Λ(K)0 (X,H,m, u, δ, ε, λ) ,

where the bimonad X = F0 (X0), H = F1 (H0) , etc. Hence Λ(K)0 (X,H) is the unique 2-functor
that maps X0 → X, H0 → H, m̂0 → m, etc. Since F has this properties we deduce Θ (K)0

is a right inverse of Λ(K)0, so Θ (K)0 and Λ(K)0 are inverses each other. Let T : F → S be a

transformation, where F,S : Bimon→ K . If T =
(
T,
{
τTn

0

}
n

)
, then

[Λ(K)1 ◦Θ (K)1] (T) = Λ(K)1 (T, τT0
) =

(
T,
{
τTn

0

}
n

)
.

In the above seqvence of equations,
{
γTn

0

}
n

are constructed inductively, using the relation (25).

Since, by definition γT0
= τT0 , and

{
τTn

0

}
n

also satisfy (25) we deduce that γTn
0

= τTn
0

for any

n ∈ N. Thus Θ (K)1 is a right inverse of Λ(K)1. Finally, Θ (K)2 is a right inverse of Λ(K)2, as
they map a 2-cell to itself. We have just concluded that Θ (K) and Λ(K) are inverses each other.

It remains to prove that the diagram

[Bimon,K]
Θ(K) //

[Bimon,F]

��

Bimon(K)

Bimon(F)

��
[Bimon,L]

Θ(L)
// Bimon(L)
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is commutative, for every 2-functor F : K→ L. By definition [Bimon,F]0 (F′) = F′ ◦F, for every
2-functor F′ : Bimon→ F. Hence,

(Θ (L)0 ◦ [Bimon,F]0) (F′) = Θ (L)0 (F′ ◦ F) = (X,H,m, u, δ, ε, λ) ,

where X = (F′ ◦ F)0 (X0) , H = (F′ ◦ F)1 (H0) , m = (F′ ◦ F) (m̂0), etc. On the other hand,

[Bimon (F)0 ◦Θ (K)0] (F′) = Bimon (F)0 (Θ (K)0 (F′))

= Bimon(F)(F′
0 (X0) ,F′

1 (H0) ,F′
2(m̂0),F′

2 (û0) ,F′
2(δ̂0),F′

2 (ε̂0) ,F′
2(λ̂0))

= (X,H,m, u, δ, ε, λ) .

Note that for the last identity we used the definition of the functor Bimon(F) and the relations
that define the bimonad (X,H,m, u, δ, ε, λ).

If T : F→ S is a transformation, with T =
(
T,
{
τTn

0

}
n

)
then

(Bimon (F)1 ◦Θ (K)1) (T) = Bimon (F)1 (T, τT0
) = (F1 (T ) ,F2 (τT0

))

= Θ (L)1

(
F1 (T ) ,

{
F2(τTn

0
)
}
n

)
= (Θ (L)1 ◦ [Bimon,F]1) (T) .

Finally, if Γ : T→ S is a modification, then

(Bimon (F)2 ◦Θ (K)2) (Γ) = Bimon (F)2 (ΓX0) = F2 (ΓX0)

= Θ (K)2 (F2 (ΓX0)) = (Θ (K)2 ◦ [Bimon,F])
2

(Γ) .

Thus the theorem is proven.

Corollary 2.6 If (X,H,m, u, δ, ε, λ) is a bimonad in K, the there is a unique 2-functor F :
Bimon→ K such that F0(X0) = X, F1(H0) = H, F2(m̂0) = m, etc.

Proof: See the proof of the preceding theorem.

2.7 (Hopf monads in K.) A bimonad (X,H,m, u, δ, ε, λ) in a 2-category K is a Hopf monad
if there is a 2-cell π : H2 → H2 such that

m • (πH) • δ = u • ε = m • (Hπ) • δ.

The 2-cell π is called the antipode of the Hopf monad (X,H).
Hopf bimonads in K may be regarded as 0-cells in a 2-category Hopfmon(K). The 1-cells in

this 2-category are the morphisms of Hopf monads. Let (X,H) and (X ′, H ′) be Hopf monads
with the antipodes π and π′, respectively. A morphism of Hopf monads from (X,H) to (X ′, H ′)
is a morphism (F, σ) between the underlying is bimonads that commutes with the antipodes,
in the sense that

σ • π′F = Fπ • σ.
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The composition of two morphisms in Hopfmon(K) is defined as in the 2-category of bimonads
in K. A 2-cell in Hopfmon(K) between two morphisms of Hopf monads is a 2-cell between the
underlying bimonad morphisms. The vertical and horizontal composition in Hopfmon(K) are
defined as in Bimon.

Proceeding as in the case of bimonads, one defines a new 2-category Hopfmon as the quotient
2-category FΓ1/R

′, where Γ1 is the computad obtained from Γ by adding the 2-cell π0 : H2
0 →

H2
0 , and R′ is the congruence generated by ≡ and the extra relations:

m0 • (σ0H0) • δ0 ≡ u0 • ε0 ≡ m0 • (H0σ0) • δ0.

Theorem 2.8 The 2-category Hopfmon represents the functor

Hopfmon(−) : 2-CAT→ 2-CAT.

Proof: One argues as in the proof of Theorem 2.5. Details are omitted.

Corollary 2.9 If (X,H,m, u, δ, ε, λ, π) is a Hopf monad in K, the there is a unique 2-functor
F : Hopfmon→ K such that F0(X0) = X, F1(H0) = H, F2(m̂0) = m, etc.
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