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Abstract
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1 Introduction

Gromov hyperbolic spaces and CAT(0) spaces have been intensively studied, in
particular with regard to their boundary theories, which display many common
features as for instance the presence of canonical boundary topologies. It is thus
natural to ask whether there is a ‘unified theory’ including Gromov hyperbolic
spaces, CAT(0) spaces, and more, together with as much common boundary
theory as possible. In this paper we discuss various possible variants of such a
‘unified theory’ of so-called rough CAT(0) spaces, also taking into consideration
some existing weak notions of nonpositive curvature. We first investigate proper-
ties of the interior of such spaces, such as the property of having (roughly) unique
geodesics, and then produce non-trivial examples of rough CAT(0) spaces. In a
sequel of this paper [8], we investigate the boundary theory within the ‘unified
theory’ of Gromov hyperbolic and CAT(0) spaces introduced here.

There are already a wide variety of conditions related to rough CAT(κ). In
geometric group theory alone, there are notions such as semi-hyperbolic groups
in the sense of Alonso and Bridson [1], and (bi)automatic [14] and (bi)combable
groups (for all of which, see also [4] and the references therein), but these no-
tions are much weaker than CAT(0), as are metric geometry notions such as
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the Ptolemaic condition ([13], [9]), Busemann convexity [10], k-convexity [19],
and L-convexity [19]. Rough CAT(0) is closer to CAT(0) than are any of these
conditions, allowing us to prove for rough CAT(0) spaces (here and in [8]) ana-
logues of more parts of the CAT(0) theory than can be proved for any of these
other notions. Another related notion is the CAT(-1,ε) notion of Gromov ([16],
[12]) which implies Gromov hyperbolicity: this is very closely related to rough
CAT(κ) for κ < 0, a notion we briefly consider and show to be equivalent to
Gromov hyperbolicity.

Recall that in the context of geodesic metric spaces, δ-hyperbolic spaces, δ ≥
0, are spaces with the property that for every geodesic triangle, each side of the
triangle is contained in a δ-neighborhood of the union of the other two sides.
On the other hand, CAT(0) spaces are geodesic spaces with metric d having the
property that for any two points u and v on a geodesic triangle the comparison
points ū and v̄ in some Euclidean comparison triangle satisfy d(u, v) ≤ |ū− v̄|. It
is thus natural to introduce some amount of ‘additive fudge’ to this comparison
property in order to obtain the notion of a rough CAT(0) space.

We work in length spaces and thus replace geodesic triangles and segments by
h-short triangles made of h-short segments, which were introduced by Väisälä [21]
in the context of Gromov hyperbolicity: a h-short segment, h ≥ 0, is a path whose
length is larger by at most h than the distance between its endpoints. Comparison
triangles can be defined using the distances between vertices, and one could then
attempt to define a rough CAT(0) condition by introducing a uniform additive
fudge to the CAT(0) condition. There is, however, a problem with choosing a
fixed h, since then even the Euclidean plane would not be rough CAT(0): h-short
segments are not forced to remain a uniformly bounded distance apart when the
distance between their common endpoints increases; see Example 3.3. Thus, h
must depend on how far apart are the vertices of a h-short triangle.

Since the definition can be formulated in this generality, we introduce rough
CAT(κ) spaces with −∞ ≤ κ ≤ 0; the case κ > 0 is trivial and we discard it.
We write rCAT(κ) as an abbreviation of “rough CAT(κ)”. We define a notion
of rCAT(κ) spaces with an explicit upper bound on h which, although useful
for many purposes, seems a little contrived. We therefore also define a variant
condition rCAT(κ; ∗), where the positive upper bound on h is an arbitrary positive
function of the vertices of the triangle. This variant is aesthetically more pleasing,
but turns out to be equivalent to the original notion of rCAT(κ), a fact that will
prove to be quite useful in Section 5.

We also define weak and very weak rCAT(κ) conditions. The weak rCAT(κ)
condition, which is equivalent to the full strength CAT(κ) condition at least when
k < 0, is equivalent to a certain 4-point subembedding condition which makes
it clear that it is stable under many limiting processes. The very weak rCAT(0)
condition will be seen to be equivalent to the bolicity condition of Kasparov
and Skandalis [17], [18] that was introduced in the context of their work on the
Baum-Connes and Novikov Conjectures.

Some of the results mentioned above are established in Section 3, and the
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remaining ones are proven in Section 4 where, motivated by the fact that CAT(0)
spaces are uniquely geodesic, we explore a rough unique geodesic property for
(weak) rough CAT(0) spaces; see Theorem 4.2. We also prove in Section 4 that
every CAT(0) space is (2 +

√
3)-rCAT(0).

Knowing that the class of rCAT(0) spaces includes both Gromov hyperbolic
length spaces and CAT(0) spaces, it is natural to ask whether there are rCAT(0)
spaces that are neither CAT(0) nor Gromov hyperbolic. In Section 5 we give
two constructions (products and gluing) for getting new rCAT(0) spaces from
old ones, which easily produce such examples.

In Theorem 5.1 we show that the l2-product of rough CAT(0) spaces is also
rough CAT(0). A rough CAT(0) space that is neither CAT(0) nor Gromov hy-
perbolic is thus obtained by taking the l2-product of a Gromov hyperbolic space
that is not CAT(0) and a CAT(0) space that is not Gromov hyperbolic (e.g. the
l2-product of the unit circle and the Euclidean plane).

Theorem 5.5 shows that gluing rough CAT(0) spaces along bounded isometric
subspaces also gives rough CAT(0) spaces, but Example 5.10 shows that this
mechanism breaks down as soon as we ask for unbounded gluing sets, even if
they are convex. Finally, Proposition 5.11 shows that normed vector spaces do
not produce interesting examples, since they must be CAT(0) if they are rough
CAT(0).

We wish to thank the referee for carefully reading the paper and for spotting
an error in an earlier version of Example 5.10.

2 Preliminaries

Let (X, d) be a metric space. We shall not distinguish notationally between paths
γ : I → X, I ⊂ R, and their images γ(I). Suppose (X, d) is rectifiably connected.
We define the intrinsic metric associated with d by

l(x, y) := inf{len(γ) : γ is a path in X containing x, y} .

(X, d) is a length space if l = d. A path γ of length d(x, y) joining x, y ∈ X is
called a geodesic segment, and is often denoted [x, y]. (X, d) is a geodesic space if
all pairs of points can be joined by geodesic segments, that is, the above infimum
is always attained.

Definition 2.1. A h-short segment, h ≥ 0, in the length space (X, d) is a path
γ : [0, L]→ X, L ≥ 0, satisfying

len(γ) ≥ d(γ(0), γ(L)) ≥ len(γ)− h.

We denote h-short segments connecting points x, y ∈ X by [x, y]h. It is convenient
to use [x, y]h also for the image of this path, so instead of writing z = γ(t) for
some 0 ≤ t ≤ L, we often write z ∈ [x, y]h. Given such a path γ and point
z = γ(t), we denote by [x, z]h and [z, y]h respectively the subpaths γ|[0,t] and
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γ|[t,L], respectively; note that both of these are h-short segments. We sometimes
write γ[x, z] and γ[z, y] in place of [x, z]h and [z, y]h if we need to specify the
short path (or geodesic) of which we are taking a subpath.

The above notation requires further explanation because of its ambiguity:
given points x, y in a length space X, there are always many short segments
[x, y]h for each h > 0, so the notation [x, y]h involves a choice. When we use this
notation in any part of this paper (by a part, we mean a definition or a statement
or proof of a result), the choice of such a path does not affect the truth of the
underlying statements. However, all subsequent uses of [x, y]h in the same part
of the paper refer to the same choice of short segment, and subsequent uses of
[x, z]h and [z, y]h for z ∈ [x, y]h refer to subpaths of this choice of [x, y]h. Even
once we fix γ = [x, y]h : [0, L] → X, the definitions of such subpaths [x, z]h and
[z, y]h may require a choice of t ∈ [0, L] for which z = γ(t) (since [x, y]h might
not be an arc). The first use of [x, z]h or [z, y]h in any part of the paper involves
such a choice, and all subsequent uses of either [x, z]h or [z, y]h in the same part
is consistent with this choice of t.

Note that a 0-short segment is a geodesic segment; in this case, we simply
write [x, y] instead of [x, y]0, and we also write (x, y) for the subpath of [x, y]
with endpoints removed. Geodesic segments are used in this paper only in the
context of the model spaces M2

κ .

Remark 2.2. The fact that (X, d) is assumed to be a length space ensures that
for any x, y ∈ X and h > 0, there exists an h-short segment [x, y]h.

Given a number κ ∈ R, the metric model space M2
κ is defined as follows. M2

0

is the Euclidean plane, M2
κ , κ > 0, is obtained from the sphere by multiplying

the metric with 1/
√
κ, and M2

κ , κ < 0, is obtained from the hyperbolic plane by
multiplying the metric with 1/

√
−κ. For more details we refer for instance to [5,

Chapter I.2].
When κ = −∞, M2

κ is the union of the real and imaginary axes of R2 with
the length metric attached. This is a much smaller space than what M2

−∞ would
be if it were defined as a cone at infinity of the space M2

κ for κ ∈ (−∞, 0). We
are, however, only interested in embeddings and subembeddings of three or four
points in our model space, and for these our simple definition of M2

−∞ suffices.
Since only the case κ = 0 will be considered for the bulk of this paper, the

distance between a, b ∈ M2
κ is denoted by |a − b|, no matter what value κ has.

For κ > 0, let Dκ denote the diameter of M2
κ ; for −∞ ≤ κ ≤ 0, set Dκ to be

infinity.
The following result is referred to as Alexandrov’s lemma and will be instru-

mental for the considerations in Section 3.

Lemma 2.3 (Alexandrov’s lemma). Let κ ∈ R and consider distinct points A, B,
B′, C ∈M2

κ; if κ > 0, we assume that |B−C|+|C−B′|+|B−A|+|A−B′| < 2Dκ.
Suppose that B and B′ lie on opposite sides of the line AC. (Note that the triangle
inequality and the assumption above imply that |B −B′| < Dκ.)
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Consider geodesic triangles T := T (A,B,C) and T ′ := T (A,B′, C). Let α,
β, γ (resp. α′, β′, γ′) be the vertex angles of T (resp. T ′) at A,B,C (resp.
A,B′, C). Suppose that γ + γ′ ≥ π. Then

|B − C|+ |C −B′| ≤ |B −A|+ |A−B′| .

Let T ⊂ M2
κ be a geodesic triangle with vertices Ā, B̄, B̄′ such that |Ā − B̄| =

|A−B|, |Ā− B̄′| = |A−B′|, and |B̄ − B̄′| = |B −C|+ |C −B′| < Dκ. Let C̄ be
the point in [B̄, B̄′] with |B̄− C̄| = |B−C|. Let ᾱ, β̄, β̄′ be the vertex angles of T
at vertices Ā, B̄, B̄′. Then

ᾱ ≥ α+ α′, β̄ ≥ β, β̄′ ≥ β′, |Ā− C̄| ≥ |A− C| .

Moreover, an equality in any of these implies the equality in the others, and occurs
if and only if γ + γ′ = π.

A geodesic triangle T (x, y, z) in a geodesic space X is a collection of three
points x, y, z ∈ X together with a choice of geodesic segments [x, y], [x, z] and
[y, z]. Given such a geodesic triangle T (x, y, z), a comparison triangle is a geodesic
triangle in M2

κ , T (x̄, ȳ, z̄), such that corresponding distances coincide: d(x, y) =
|x̄− ȳ|, d(y, z) = |ȳ− z̄|, d(z, x) = |z̄− x̄|. A point ū ∈ [x̄, ȳ] is a comparison point
for u ∈ [x, y] if d(x, u) = |x̄− ū|.

For details on the definition and characterizations of CAT(κ) we refer the
reader for instance to [5, Chapter II.1]. Let X be geodesic and κ ∈ R. Let
T (x, y, z) be a geodesic triangle in X with perimeter less than 2Dκ, and consider
a comparison triangle T (x̄, ȳ, z̄) for T (x, y, z) in M2

κ . We say that T (x, y, z)
satisfies the CAT(κ) condition if for any u, v ∈ T (x, y, z),

d(u, v) ≤ |u− v|.

In the case that κ ≤ 0 we call X a CAT(κ) space if all geodesic triangles in
X satisfy the CAT(κ) condition. For κ > 0 we say X is a CAT(κ) space if
all geodesic triangles of perimeter less than 2Dκ satisfy the CAT(κ) condition.
Equivalently, u can be assumed to be one of the vertices of the triangle T (x, y, z)
and v can be assumed to be on the opposite side. Even more, v can be assumed
to be a midpoint of the opposing side.

Another way of characterizing geodesic CAT(κ) spaces, κ ∈ R, is by using
the so-called 4-point condition. Suppose xi ∈ X and x̄i ∈ M2

κ for 0 ≤ i ≤ 4,
with x0 = x4 and x̄0 = x̄4. We say that (x̄1, x̄2, x̄3, x̄4) is a subembedding of
(x1, x2, x3, x4) in M2

κ if

d(xi, xi−1) = |x̄i − x̄i−1| , 1 ≤ i ≤ 4 ,

d(x1, x3) ≤ |x̄1 − x̄3| and d(x2, x4) ≤ |x̄2 − x̄4| .

The metric space (X, d) satisfies the 4-point condition, if every 4-tuple in X has
a subembedding in M2

κ . When X is geodesic, this turns out to be equivalent to
X being CAT(κ).
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Also, X is CAT(0) if and only if the CN inequality of Bruhat and Tits is
satisfied, that is, for all x, y, z ∈ X and all m ∈ X with d(y,m) = d(m, z) =
d(y, z)/2,

d(x, y)2 + d(x, z)2 ≥ 2d(x,m)2 +
1

2
d(y, z)2.

We refer the reader to [15], [11], [21], or [5, Part III.H] for the theory of
Gromov hyperbolic spaces. A metric space (X, d) is δ-hyperbolic, δ ≥ 0, if

〈x, z; w〉 ≥ 〈x, y; w〉 ∧ 〈y, z; w〉 − δ , x, y, z, w ∈ X ,

where 〈x, z; w〉 is the Gromov product defined by

2 〈x, z; w〉 = d(x,w) + d(y, w)− d(x, y) .

The following is a version of the well-known Tripod Lemma, almost as stated
in [21, 2.15], the only minor difference being that it is stated for short arcs rather
than short paths.

Lemma 2.4. Suppose that γ1 and γ2 are unit speed h-short paths from o to x1
and x2, respectively, in a δ-hyperbolic space. Let y1 = γ1(t) and y2 = γ2(t) for
some t ≥ 0, where d(o, y1) ≤ 〈x1, x2; o〉. Then d(y1, y2) ≤ 4δ + 2h.

A map f : (X, dX)→ (Y, dY ) is an (A,B)-quasi-isometry if there are constants
A > 0, B ≥ 0 such that

1

A
dX(x1, x2)−B ≤ dY (f(x1), f(x2)) ≤ AdX(x1, x2) +B

for any x1, x2 ∈ X, and such that dist(y, f(X)) ≤ B, y ∈ Y . Here, dist(x,A) :=
inf{d(x, y) : y ∈ A} is the distance of a point x from a set A. A B-rough isometry
is a (1, B)-quasi-isometry; B is called the roughness constant of f .

We write A ∧ B and A ∨ B for the minimum and maximum, respectively, of
two numbers A,B.

3 Rough CAT(κ) spaces: basic results

In this section, we define rough CAT(0) spaces and some weaker variants of them,
and prove some some basic results involving these conditions.

Definition 3.1. A h-short triangle T := Th(x1, x2, x3) with vertices x1, x2, x3 ∈
X is a collection of h-short segments [x1, x2]h, [x2, x3]h and [x3, x1]h. Given
such a h-short triangle T , a comparison triangle will mean a geodesic triangle
T := T (x̄1, x̄2, x̄3) in the comparison space M2

κ , −∞ ≤ κ < ∞ such that |x̄i −
x̄j | = d(xi, xj), i, j ∈ {1, 2, 3}. Furthermore, we say that ū ∈ T is a comparison
point for u ∈ T , say u ∈ [x1, x2]h, if

|x̄− ū| ≤ len([x, u]h) and |ū− ȳ| ≤ len([u, y]h) .

If κ = −∞, the comparison triangle is called a comparison tripod.
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Note that ū is not uniquely determined by u as in the case of comparison
points for triangles in CAT(κ) spaces. Also, it immediately follows from the
definition that

|x̄− ū| ≥ len([x, u]h)− h and |ū− ȳ| ≥ len([u, y]h)− h.

In order to avoid cluttered notation, we do not specify the comparison space in
the notation T (·, ·, ·); the space will always be clear from the context.

Remark 3.2. Clearly, we can always find comparison triangles in M2
κ for any

h-short triangle Th(x, y, z) in any length space X, as long as d(x, y) + d(y, z) +
d(z, x) ≤ 2Dκ. In fact this amounts to the well-known fact that triangles in M2

κ

can be constructed with arbitrary sidelengths a ≤ b ≤ c, as long as the perimeter
a+ b+ c is at most twice the diameter of M2

κ and the triangle inequality c ≤ a+ b
holds.

Recall that a CAT(κ) space is a geodesic space in which the distance between
any pair of points in a geodesic triangle is at most as large as the distance between
comparison points in a comparison triangle in M2

κ . The natural definition of
rough CAT(κ) should therefore involve a similar distance inequality between an
arbitrary pair of points in an h-short triangle, and a pair of comparison points
in an comparison triangle, for some h > 0. Our definition will indeed have this
form (and we can work with length spaces rather than geodesic spaces), but for
κ = 0 (the main case that interests us!), the value of h must depend on how far
apart are the vertices of the h-short triangle. The following example shows that
a fixed h > 0 “would not work” when κ = 0 in the sense that even the Euclidean
plane would fail to satisfy such a condition.

Example 3.3. Let h > 0 be fixed, and take x, y = z to be the points given
in coordinate form as (−R, 0) and (R, 0), respectively, for some R > 0. Let
T := Th(x, y, z) be the short triangle consisting of the pair of line segments from
x to y and y to z (the latter being degenerate), plus a path from z to x consisting of
the two line segments from z to u := (0, t) and u to x, where t =

√
hR+ h2/4; it

is clear that T is an h-short triangle. The comparison triangle T is the (geodesic)
planar triangle with the same vertices. If we take v to be the origin, then t, and
so d(u, v), tends to infinity as R tends to infinity, while the distance between any
comparison points in T remains bounded.

Definition 3.4. Let −∞ ≤ κ ≤ 0, C > 0, and h ≥ 0. Suppose (X, d) is a length
space and that Th(x, y, z) is a h-short triangle in X. We say that Th(x, y, z)
satisfies the C-rough CAT(κ) condition if given a comparison triangle T (x̄, ȳ, z̄)
in M2

κ associated with Th(x, y, z), we have

d(u, v) ≤ |ū− v̄|+ C ,

whenever u, v lie on different sides of Th(x, y, z) and ū, v̄ ∈ T (x̄, ȳ, z̄) are corre-
sponding comparison points.
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We define a short function (for a metric space X) to be any function H :
X ×X ×X → (0,∞).

Definition 3.5. Let −∞ ≤ κ ≤ 0 and C > 0. We say that a length space (X, d)
is C-rough rCAT(κ, ∗), or simply C-rCAT(κ; ∗) if there exists a short function H
such that the following condition holds: if Th(x, y, z) is a h-short triangle in X
for h := H(x, y, z), then Th(x, y, z) satisfies the C-rough CAT(κ) condition.

It is often useful to use a specific short function H, so we say that X is
C-rCAT(κ) if it is C-rCAT(κ; ∗) with standard short function H defined by

H(x, y, z) =
1

1 ∨ d(x, y) ∨ d(x, z) ∨ d(y, z)
.

For both the rCAT(κ; ∗) or rCAT(κ) conditions, we call the associated parameter
C the roughness constant ; we omit this parameter if its value is unimportant.

In the Euclidean plane, it follows from Example 3.3 that h can be no larger
than some multiple of 1/(d(x, y) ∨ d(x, z) ∨ d(y, z)) in order for a Th(x, y, z) to
satisfy a given rough CAT(0) condition. It is also easy to see that any given
rough CAT(0) condition requires that h to be bounded, regardless of how close
together x, y, z are. These considerations show that our definition of a standard
short function gives a short function that is in general as large as it can possibly
be, modulo multiplication by a fixed constant, if we want all CAT(0) spaces to
be rCAT(0).

In spite of this justification, our choice of standard short function still seems a
little contrived, and the definition of rCAT(κ; ∗) spaces seems more natural than
that of rCAT(κ) spaces. However, we will show in Corollary 4.4 that these two
classes are equivalent, with quantitative dependence of roughness constants.

Trivially ifX is C-rCAT(κ; ∗) with a given short functionH, it is C-rCAT(κ; ∗)
with any other pointwise smaller short function G, so we may always assume that
the short function H is pointwise no larger than the standard short function.

In the above definitions, we could allow κ to be positive, as long as we restrict
x, y, z so that d(x, y) + d(y, z) + d(z, x) < 2Dκ (as in the definition of CAT(κ)
for κ > 0). However, it is trivial that every length space is C-rough CAT(κ) for
C > Dκ, so the class of all rough CAT(κ) spaces is of no interest. For this reason,
we insist that −∞ ≤ κ ≤ 0 from now on.

It is well known (and easily shown) that the CAT(κ) condition is equivalent
to a weaker version of the same definition where the comparison inequality is
assumed only when one point is a vertex, and one can even restrict the other
point to being a midpoint of a side. This leads us to the following definitions.

Definition 3.6. Let −∞ ≤ κ ≤ 0 and C > 0. A weak C-rough CAT(κ) condition
is similar to the C-rough CAT(κ) condition defined in Definition 3.5, except that
it is required to hold only when v = x and u ∈ [y, z]h. A very weak C-rough
CAT(κ) condition is also similar to the C-rough CAT(κ) condition, except that
it is required to hold only when v = x and u ∈ [y, z]h is a h-midpoint of [y, z]h, that
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is, if it has the property that the Euclidean midpoint ū of [ȳ, z̄] is a comparison
point for u. Weak and very weak C-rCAT(κ; ∗) spaces, are then defined by making
the associated changes to the above definitions of C-rCAT(κ; ∗) spaces, and we
can analogously define weak and very weak rCAT(κ) spaces.

By elementary geometry, we see that if x, y, z are points in the Euclidean
plane and u lies on the line segment from y to z with |u− y| = t|z − y|, then

(d(x, u))2 ≤ (1− t)(d(x, y))2 + t(d(x, z))2 − t(1− t)(d(y, z))2 . (3.7)

It follows that the weak C-rCAT(0) condition can be written in the following
more explicit form: if u = λ(s), where λ : [0, L] → X is a h-short path from y
to z parametrized by arclength, h satisfies the usual bound, and we have both
td(y, z) ≤ s and (1− t)d(y, z) ≤ L− s for some 0 ≤ t ≤ 1, then

(d(x, u)− C)2 ≤ (1− t)(d(x, y))2 + t(d(x, z))2 − t(1− t)(d(y, z))2 . (3.8)

The very weak C-rCAT(0) condition can be written in a similar form, but with
the restriction t = 1/2.

The following result summarizes what we can say about the relationships
between all these variants of rCAT(κ) spaces.

Theorem 3.9.

(a) For −∞ ≤ κ < 0, the classes of rCAT(κ), rCAT(κ; ∗), weak rCAT(κ), and
weak rCAT(κ; ∗) spaces all coincide with the class of Gromov hyperbolic
spaces, and all containment implications hold with quantitative dependence
of parameters.

(b) The classes of rCAT(0) spaces and rCAT(0; ∗) spaces coincide, again with
quantitative control of parameters, and the same is true of weak rCAT(0)
and weak rCAT(0; ∗) spaces.

(c) The class of rCAT(0) spaces is strictly larger than the union of the classes
of Gromov hyperbolic and CAT(0) spaces.

Part (a) of this theorem follows from Theorem 3.18 below, while part (b)
follows from Corollary 4.4, and an example to prove part (c) was given in the
Introduction (see also Section 5).

There are a few other possible relationships between these variant rCAT(κ)
spaces whose truth we cannot determine. Specifically we do not know if very
weak rCAT(κ) spaces are necessarily weak rCAT(κ) (either for k < 0 or k = 0),
and we do not know if weak rCAT(0) spaces are necessarily rCAT(0). While
the class of rCAT(0) spaces is the main focus of our interest in this paper, the
(weak) rCAT(κ) characterization of Gromov hyperbolicity in the above theorem
may also be of some interest.



12 S.M. Buckley and K. Falk

We now wish to discuss another connection to existing notions of non-positive
curvature. In their work on the Baum-Connes and Novikov Conjectures, Kas-
parov and Skandalis [17], [18] introduced the class of bolic spaces which, as our
class of rCAT(0) spaces, includes both Gromov hyperbolic spaces and CAT(0)
spaces. It turns out that in the case of length spaces, bolicity is equivalent to very
weak rCAT(0). To see this, we first note that by work of Bucher and Karlsson
[7], bolicity is reduced to a condition reminiscent of the CN inequality of Bruhat
and Tits ([5, p. 163] and [6]).

Definition 3.10. A metric space X is called δ-bolic, for some δ > 0, if there is
a map m : X ×X → X with the property that for all x, y, z ∈ X

2d(m(x, y), z) ≤
√

2d(x, z)2 + 2d(y, z)2 − d(x, y)2 + 4δ.

Proposition 3.11. Let X be a length space. If X is very weak C-rCAT(0),
C > 0, then it is δ-bolic with δ = C/2. If X is δ-bolic, δ > 0, then it is very weak
C-rCAT(0) with C = 4δ +

√
2.

Proof: LetX be a very weak C-rCAT(0) space. Let x, y, z ∈ X and let Th(x, y, z)
be some h-short triangle with comparison triangle T (x̄, ȳ, z̄). Let m(y, z) be some
h-midpoint of [y, z]h. This defines a map m : X × X → X. By definition,
the Euclidean midpoint m̄ of [ȳ, z̄] is a comparison point for m(y, z). Using the
comparison triangle property, the Euclidean parallelogram law and the very weak
C-rCAT(0) condition, we obtain

d(x, y)2 + d(x, z)2 = |x̄− ȳ|2 + |x̄− z̄|2

= 2 |x̄− m̄|2 +
1

2
|ȳ − z̄|2

≥ 2(d(x,m)− C)2 +
1

2
d(y, z)2.

Thus X is C/2-bolic.
Let now X be a δ-bolic length space with some δ > 0. Let Th(x, y, z) be

some h-short triangle and T (x̄, ȳ, z̄) a corresponding comparison triangle in the
Euclidean plane. Furthermore, let m be some h-midpoint for [y, z]h, that is, m
admits the Euclidean midpoint m̄ of [ȳ, z̄] as a comparison point. By definition
we thus obtain that d(y,m) ≤ d(y, z)/2 + h and d(m, z) ≤ d(y, z)/2 + h. By
applying the bolic inequality for y, z,m ∈ X and m(y, z) ∈ X, and the fact that
h = 1/(1 ∨ d(x, y) ∨ d(x, z) ∨ d(y, z)), it follows that

2d(m(y, z),m) ≤
√

2d(y,m)2 + 2d(m, z)2 − d(y, z)2 + 4δ

≤
√

4(d(y, z)/2 + h)2 − d(y, z)2 + 4δ

≤ 2
√

2 + 4δ.

Applying bolicity for x, y, z ∈ X and m(y, z) ∈ X now yields

2d(x,m) ≤ 2d(x,m(y, z)) + 2d(m(y, z),m)

≤
√

2d(x, y)2 + 2d(x, z)2 − d(y, z)2 + 8δ + 2
√

2.
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By using the comparison triangle property and the Euclidean parallelogram equa-
lity we finally deduce

2(d(x,m)− 4δ −
√

2)2 ≤ d(x, y)2 + d(x, z)2 − 1

2
d(y, z)2

= |x̄− ȳ|2 + |x̄− z̄|2 − 1

2
|ȳ − z̄|2

= 2 |x̄− m̄|2,

which implies the very weak C-rCAT(0) inequality with C = 4δ +
√

2.

The CAT(κ) condition (for geodesic spaces X) is normally stated as the C =
h = 0 variant of our rCAT(κ) definition, but it can also be written as a so-called
4-point condition. We prove an rCAT(κ) analogue of this, but first we need a
simple lemma.

Lemma 3.12. Let x, y be a pair of points in the Euclidean plane R2, with l :=
|x − y| > 0. Fixing h > 0, and writing L := l + h, let γ : [0, L] → R2 be a
h-short segment from x to y, parametrized by arclength. Then there exists a map
λ : [0, L]→ [x, y] such that λ(0) = x, λ(L) = y, and

|λ(t)− x| ≤ |γ(t)− x| , 0 ≤ t ≤ L , (3.13)

|λ(t)− y| ≤ |γ(t)− y| , 0 ≤ t ≤ L , (3.14)

δ(t) := dist(γ(t), λ(t)) ≤M :=
1

2

√
2lh+ h2 , 0 ≤ t ≤ L . (3.15)

In particular if h ≤ 1/(1 ∨ l), then δ(t) ≤
√

3/2 for all 0 ≤ t ≤ L.

Proof: The desired result is invariant under isometries of the plane, so we choose
the points x = (x1, 0) and y = (y1, 0) to be located on the first coordinate axis
with x1 < y1. We also write γ = (γ1, γ2) in Euclidean coordinates. Now define
λ(t) = (λ1(t), 0), where λ1(t) = (γ1(t) ∨ x1) ∧ y1. It is clear that λ(0) = x,
λ(L) = y, and that λ satisfies (3.13) and (3.14).

It is clear that to maximize δ(t) := dist(γ(t), λ(t)), we should pick γ to be
the concatenation of two straight line paths, one from x to γ(t) of length t and
one from γ(t) to y of length L − t. But then γ(t) traces out an ellipse and it is
routine to verify that δ(t) ≤ δ(L/2) = M .

Definition 3.16. Let (X, d) be a metric space, −∞ ≤ κ ≤ 0, and C ≥ 0.
Suppose xi ∈ X and x̄i ∈ M2

κ for 0 ≤ i ≤ 4, with x0 = x4 and x̄0 = x̄4. We say
that (x̄1, x̄2, x̄3, x̄4) is a C-rough subembedding of (x1, x2, x3, x4) in M2

κ if

d(xi, xi−1) = |x̄i − x̄i−1| , 1 ≤ i ≤ 4 ,

d(x1, x3) ≤ |x̄1 − x̄3| , and

d(x2, x4) ≤ |x̄2 − x̄4|+ C .
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Definition 3.17. A metric space (X, d) satisfies the (C, κ)-rough 4-point con-
dition, where C ≥ 0 and −∞ ≤ κ ≤ 0, if every 4-tuple in X has a C-rough
subembedding in M2

κ . When κ = 0, we omit it from the notation.

Theorem 3.18. For a length space (X, d) and −∞ ≤ κ ≤ 0, the following
conditions are equivalent, with quantitative dependence of parameters:

(a) X is weak C-rCAT(κ) for some C > 0;

(b) X is weak C-rCAT(κ; ∗) for some C > 0;

(c) X satisfies the (C ′, κ)-rough 4-point condition for some C ′ > 0.

Moreover if −∞ ≤ κ < 0, then these conditions are quantitatively equivalent to
δ-hyperbolicity and to rCAT(κ).

Proof: Trivially (a) implies (b), with the same C. We next prove that (b) implies
(c) with C ′ = 2C. Suppose X is a weak C-rCAT(κ; ∗) space with short function
H. Let (x1, x2, x3, x4) be a 4-tuple inX, and let h := H(x1, x3, x2)∧H(x1, x3, x4).
Choose h-short triangles T2 := Th(x1, x3, x2) and T4 := Th(x1, x3, x4), and com-
parison triangles T 1 := T (x̄1, x̄3, x̄2) and T 2 := T (x̄1, x̄3, x̄4), such that T 2 and
T 4 have a common side [x̄1, x̄3], and that x̄2 and x̄4 lie on opposite sides of the
line through x̄1 and x̄3. Let z̄ be the point of intersection of [x̄2, x̄4] and the line
through x̄1 and x̄3.

Suppose first that z̄ ∈ [x̄1, x̄3]; this is always the case if κ = −∞ but it may
fail for finite κ. Picking a h-short segment [x1, x3]h, let z ∈ [x1, x3]h be such that
d(x1, z) = |x̄1 − z̄|; note that for i = 2, 4, the points z̄, ȳi are comparison points
in the triangle T i for z, yi, respectively. By the triangle and weak rough CAT(κ)
inequalities,

d(x2, x4) ≤ d(x2, z) + d(z, x4) ≤ |x̄2 − z̄|+ |z̄ − x̄4|+ 2C = |x̄2 − x̄4|+ 2C .

Note that d(x1, x3) = |x̄1− x̄3|. Thus (x̄1, x̄2, x̄3, x̄4) is a C ′-rough subembedding
in M2

κ of (x1, x2, x3, x4), with C ′ = 2C.
Alternatively suppose that the segments [x̄1, x̄3] and [x̄2, x̄4] do not intersect

(and so κ ∈ R). Let Q be the quadrilateral consisting of the union of the four
geodesic segments [x̄1, x̄2], [x̄2, x̄3], [x̄3, x̄4], and [x̄4, x̄1]. Then M2

κ \ Q has two
components: we call the one containing (x̄1, x̄3) the inner component, and we
define the inner and outer angles at the vertices in Q in the natural way; note
that the inner angle at x̄i, i = 1, 3, is the sum of the angles at the same point
in the triangles T 2 and T 4. If both inner angles were less than π, then it would
follow by continuity that there exists a point ū ∈ [x̄1, x̄3] such that the inner
angle at u for the quadrilateral with vertices x̄1, x̄2, ū, x̄4 is π. But then it follows
from Alexandrov’s Lemma (Lemma 2.3) that z̄ = ū, contradicting the fact that
z̄ /∈ [x̄1, x̄3].

Thus we may assume without loss of generality that the inner angle at x̄1 in
Q is at least π. It follows that there exists a geodesic triangle in M2

κ with vertices
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x̃2 = x̄2, x̃3 = x̄3, and x̃0 ≡ x̃4, together with a point x̃1 ∈ [x̃2, x̃4], such that
|x̃i − x̃i−1| = d(xi, xi−1), 1 ≤ i ≤ 4, and

|x̃2 − x̃4| = |x̃2 − x̃1|+ |x̃1 − x̃4| = d(x2, x1) + d(x1, x4) ≥ d(x2, x4) .

By Alexandrov’s lemma, |x̃1− x̃3| ≥ |x̄1− x̄3| = d(x1, x3). Thus (x̃1, x̃2, x̃3, x̃4) is
a 0-rough subembedding in M2

κ of (x1, x2, x3, x4). Putting this case together with
the first case, we see that weak C-rCAT(κ; ∗) implies the (2C, κ)-rough 4-point
condition.

We prove that (c) implies (a) first for κ = 0. Suppose x, y, z lie in a length
space X that satisfies the C ′-rough 4-point condition, and write h := H(x, y, z),
where H is the standard short function. Suppose also that T = Th(x, y, z) is a
h-short geodesic triangle, u ∈ [y, z]h, and v := x.

Let (ȳ, ū, z̄, x̄) be a C ′-rough subembedding for (x1, x2, x3, x4) = (y, u, z, x).
Apply Lemma 3.12, with γ being the piecewise linear path from ȳ to γ(t) := ū
to z̄, to get an associated point λ(t) := ū′ on the line segment [ȳ, z̄] such that
|ū− ū′| ≤

√
3/2. Thus d(u, x) ≤ |ū′ − x̄|+ C1, where C1 := C ′ +

√
3/2.

The Euclidean triangle T (x̄, ȳ, z̄) satisfies |x̄−ȳ| = d(x, y) and |x̄−z̄| = d(y, z),
but it is not necessarily a comparison triangle for T because we know only that
|z̄− ȳ| ≥ d(z, y). However if we take T ′ := T (x′, y′, z′) to be a comparison triangle
in M2

0 for T , and define u′ ∈ [y′, z′] via the equation

|u′ − y′|
|z′ − y′|

=
|ū′ − ȳ|
|z̄ − ȳ|

, (3.19)

then it follows from (3.7) that |ū′ − x̄| ≤ |u′ − x′|. Moreover by combining the
subembedding properties, (3.13), (3.14), (3.19), and the fact that |y′−z′| ≤ |ȳ−z̄|,
we see that

|u′ − y′| ≤ |ū′ − ȳ| ≤ |ū− ȳ| = |u− y| ≤ t ,
|u′ − z′| ≤ |ū′ − z̄| ≤ |ū− z̄| = |u− z| ≤ L− t ,

and so u′ is a comparison point for u. Since d(u, x) ≤ |ū′− x̄|+C1, we have shown
the C1-rCAT(0) condition for this choice of data, comparison triangle, and this
particular choice of comparison point u′.

A general comparison point u′′ for u on the side [y′, z′] of T ′ must satisfy
|u′′ − u′| ≤ h ≤ 1, and so it follows that the C ′-rough 4-point condition implies a
weak C-rCAT(0) condition for C = C ′ + 1 +

√
3/2.

It remains to prove that when −∞ ≤ κ < 0, (c) implies (a), and both are
equivalent to Gromov hyperbolicity. The δ-hyperbolicity condition can be written
in the form

d(x, z) + d(y, w) ≤ (d(x, y) + d(z, w)) ∨ (d(x,w) + d(y, z)) + 2δ ,

and this condition holds (with δ = log 3/
√
−κ) for all points x, y, z, w ∈ M2

κ ;
see [11, Theorem 1.5.1]. If instead x, y, z, w lie in a space X that satisfies the
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(C ′, κ)-rough 4-point condition, then this condition and the δ-hyperbolicity of
M2
κ immediately imply the (δ + C ′)-hyperbolicity of X.
Taking h ≤ 1 in Lemma 2.4, it is readily deduced that every δ-hyperbolic

space is C-rCAT(−∞) for C = 4δ + 2, and so a fortiori C-rCAT(κ) for every
κ. We note in particular that the (C ′, κ)-rough 4-point condition implies the
C-rCAT(κ) condition for C = 4C ′ + 2 + 4 log 3/

√
−κ.

It follows rather easily from Theorem 3.18 that CAT(κ) spaces are rCAT(κ)
with roughness constant C = C(κ) when k < 0; alternatively, this follows from
the well-known geodesic stability of Gromov hyperbolic spaces (see for instance
[5, Part III.H] or [21]). The fact that every CAT(κ) space is an rCAT(κ) space
is also true when κ = 0: see Corollary 4.6.

Remark 3.20. The CAT(0) analogue of Theorem 3.18 in [5, II.3.9] assumes that
X is a complete space with approximate midpoints. Such an assumption readily
implies that X is a length space, so we use this latter assumption in our theorem
and in Corollary 3.22 below, since we do not wish to restrict the theory of rCAT(0)
spaces to complete spaces.

It is shown in Bridson and Haefliger [5, II.3.10] that CAT(0) is preserved by
various limit operations, including pointed Gromov-Hausdorff limits and ultralim-
its; in particular both generalized tangent space and asymptotic cones of CAT(0)
spaces are CAT(0) spaces (see [5] for the definition of all of these concepts). The
trick is to use the 4-point condition and the rather weak limit concept of a 4-point
limit. Essentially the same arguments, with the 4-point condition replaced by our
rough 4-point condition, give us similar results for rCAT(0) spaces which we now
state. We omit the proofs since they are obtained by routine adjustments to the
proofs of II.3.9 and II.3.10 in [5]. For completeness, we begin with a definition of
4-point limits.

Definition 3.21. A metric space (X, d) is a 4-point limit of a sequence of
metric spaces (Xn, dn) if for every x1, x2, x3, x4 ∈ X, and ε > 0, there ex-
ist infinitely many integers n and points xi,n ∈ Xn, 1 ≤ i ≤ 4, such that
|d(xi, xj)− dn(xi,n, xj,n)| < ε for 1 ≤ i, j ≤ 4.

Corollary 3.22. Suppose the length space (X, d) is a 4-point limit of the weak
Cn-rCAT(0; ∗) spaces (Xn, dn). If Cn ≤ C for all n, then (X, d) is a weak C ′-
rCAT(0) space for some C ′ dependent only on C. If Cn → 0 and X is complete,
then (X, d) is a CAT(0) space.

Corollary 3.23. Suppose (X, d) is a length space and (Xn, dn) form a sequence
of C-rCAT(0) spaces. Then there exists a constant C ′ dependent only on C such
that:

(a) If (X, d) is a (pointed or unpointed) Gromov-Hausdorff limit of (Xn, dn)
then (X, d) is a C ′-rCAT(0) space.
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(b) If (X, d) is an ultralimit of (Xn, dn), then (X, d) is a C ′-rCAT(0) space.

(c) If X is rCAT(0), then any asymptotic cone ConeωX := limω(X, d/n) is a
CAT(0) space for every non-principal ultrafilter ω.

In each of the cases above, the existence of an approximate midpoint for
arbitrary x, y ∈ X (meaning a point m such that d(x,m)∨d(y,m) ≤ ε+d(x, y)/2
for fixed but arbitrary ε > 0) follows easily from the hypotheses, and so (X, d) is
a length space if it is complete.

4 Rough CAT(0) and roughly unique geodesics

In this section, we explore the rough unique geodesic property of (weak) rough
CAT(0, ∗; ∗) spaces. Recall that CAT(0) spaces are uniquely geodesic. The
rCAT(0) condition for a h-short triangle T (x, y, y) readily gives the following
rough version of this.

Observation 4.1. Let x, y be a pair of points in a C-rCAT(0) space (X, d), and let
h := 1/(1 ∨ d(x, y)). Let γi : [0, Li] → X, i = 1, 2 be a pair of h-short segments
from x to y, parametrized by arclength, with L1 ≤ L2. Then d(γ1(t), γ2(t)) ≤ C,
0 ≤ t ≤ L1.

The following theorem improves the above observation.

Theorem 4.2. Let x, y be a pair of points in a weak C-rCAT(0; ∗) space (X, d),
with L := d(x, y). For i = 1, 2, let hi > 0 and let γi : [0, L+hi]→ X be a hi-short
segment from x to y, parametrized by arclength; we assume that h1 ≤ h2. Then

d(γ1(t), γ2(t)) ≤ 2C + h2 +

√
2Lh1 + h21

2
+

√
2Lh2 + h22

2
, 0 ≤ t ≤ L+ h1 ,

In particular, if h2 ≤ 1/(1 ∨ L), then

d(γ1(t), γ2(t)) ≤ 2C + 1 +
√

3 , 0 ≤ t ≤ L+ h1 .

Proof: The result follows from the triangle inequality if t ≤ h2. Let us therefore
assume that h2 ≤ L+ h1 and fix t ∈ (0, L+ h1]. Let t′ := t ∧ L.

Throughout this proof i can equal either 1 or 2. We write zi := γi(t) and
choose a path γ3 : [0, L + h] → X from x to y, parametrized by arclength, for
some 0 < h ≤ H(x, y, z1)∧H(x, y, z2). Let T i = Th(x, y, zi) be a h-short triangle
which includes γ3 as a side, let T i = T (x̄, ȳ, z̄i) be corresponding comparison
triangles in M2

0 , let ūi be a point on [x̄, ȳ] that is closest to z̄i, and let ui = γ3(ti),
where ti := |ūi − x̄|. Note that ūi is a comparison point for ui.

By basic geometry, we have ti ≤ |z̄i − x̄| = d(zi, x) and L − ti ≤ |z̄i − ȳ| =
d(zi, y), and so ti ∈ [t− hi, t]. Thus |u1 − u2| ≤ h2.



18 S.M. Buckley and K. Falk

For i = 1, 2, the concatenation of the two sides of T i other than [x̄, ȳ] forms
a hi-short path, so by weak C-rCAT(0; ∗) and Lemma 3.12,

d(z1, z2) ≤ d(z1, u1) + d(u1, u2) + d(u2, z2)

≤ |z̄1 − ū1|+ h2 + |ū2 − z̄2|+ 2C

≤ 2C + h2 +

√
2Lh1 + h21

2
+

√
2Lh2 + h22

2
,

as required.

Remark 4.3. It is clear from the above proof that the upper bound can be im-
proved if h1 ≤ h (where h is as in the proof). In this case, we get

d(γ1(t), γ2(t)) ≤ C + h2 +

√
2Lh2 + h22

2
, 0 ≤ t ≤ L+ h1 ,

and if h2 ≤ 1/(1 ∨ L), then

d(γ1(t), γ2(t)) ≤ C + 1 +

√
3

2
, 0 ≤ t ≤ L+ h1 .

Using the above theorem and remark, we readily get the first statement of the
following corollary. The weak and very weak variants follow by an examination of
the proof of Theorem 4.2. Alternatively, the weak rCAT(0) part of this corollary
follows from Theorem 3.18 (with the same constant C ′′).

Corollary 4.4. A C-rCAT(0; ∗) space is C ′-rCAT(0), for C ′ = 3C + 2 +
√

3. A
weak (or very weak) C-rCAT(0; ∗) space is weak (or very weak) C ′′-rCAT(0), for
C ′′ = 2C + 1 +

√
3/2.

We now state a variant of Theorem 4.2 for CAT(0) spaces; we omit the very
similar (but less technical) proof.

Theorem 4.5. Let x, y be a pair of points in a CAT(0) space (X, d), with L :=
d(x, y). For i = 1, 2, let hi ≥ 0 and let γi : [0, L+ hi]→ X be a hi-short segment
from x to y, parametrized by arclength; we assume that h1 ≤ h2. Then

d(γ1(t), γ2(t)) ≤ h2 +

√
2Lh1 + h21

2
+

√
2Lh2 + h22

2
, 0 ≤ t ≤ L+ h1 ,

In particular, if h1 = 0 and h2 ≤ 1/(1 ∨ L), then

d(γ1(t), γ2(t)) ≤ 1 +

√
3

2
, 0 ≤ t ≤ L .

The above theorem has the following easy corollary.
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Corollary 4.6. A CAT(0) space is C-rCAT(0) for C = 2 +
√

3.

We record here a Rough Convexity lemma for rCAT(0) spaces. This is a
rough analogue of [5, Proposition II.2.2], and can be proved in a similar way, so
we leave its proof as an exercise.

Lemma 4.7. Suppose a1, a2, b1, b2 are points in a C-rCAT(0) space. Let γi :
[0, 1] → X be constant speed hi-short paths parametrized by arclength from ai to
bi, i = 1, 2, where hi = 1/(1 ∨ d(ai, bi)). Then

d(γ1(t), γ2(t)) ≤ (1− t)d(a1, a2) + td(b1, b2) + 2C .

If either a1 = a2 or b1 = b2, then we can replace 2C by C in the above estimate.

Remark 4.8. Note that R2 with the Euclidean metric is CAT(0), while Z2 with
the `1-metric is not even very weak rCAT(0). Thus rCAT(0) is not invariant
under quasi-isometry. By comparison, we note the well-known facts that Gromov
hyperbolicity is invariant under quasi-isometry in the context of geodesic spaces,
while the CAT(0) property is only invariant under isometry.

5 Examples

We already know that the class of rCAT(0) spaces include both Gromov hyper-
bolic (by Theorem 3.18 and the fact that rCAT(κ) implies rCAT(0) for κ < 0)
and CAT(0) spaces (by Corollary 4.6). Here we give two constructions (products
and gluing) for getting new rCAT(0) spaces from old ones, making it easy to
construct rCAT(0) spaces that are neither CAT(0) nor Gromov hyperbolic.

For metric spaces (X1, d) and (X2, d), the l2-product (Z, | · |) is given by
X := X1 ×X2 and

d((x1, x2), (y1, y2)) =
√

(d(x1, y1))2 + (d(x2, y2))2.

It is well known that (X, d) is a metric space. Note that we are using d to indicate
three different metrics: in all cases, the reader should infer from the context which
one is meant. We also use len(γ) to indicate length of a path γ in any one of
these spaces.

The product of CAT(0) spaces is CAT(0). A proof follows immediately from
the equivalence of CAT(0) with the CN inequality of Bruhat and Tits. Since it is
not clear if rCAT(0) is equivalent to a rough version of the CN inequality (that is,
bolicity or very weak rCAT(0), as shown in Proposition 3.11), no such easy proof
of the rough analogue of this result is available. Nevertheless it is true according
to the following theorem. Quantitative dependence of the roughness constant
is most neatly stated using rCAT(0; ∗), but note that this gives quantitative
dependence of the rCAT(0) roughness constant by Corollary 4.4.

Theorem 5.1. If (X1, d) and (X2, d) are both C-rCAT(0; ∗) spaces, then their
l2-product (X, d) is a (

√
2C)-rCAT(0; ∗) space.
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To prove the above theorem, we first need a lemma.

Lemma 5.2. Suppose (X, d) is the l2-product of two length spaces (X1, d) and
(X2, d). If γ = (γ1, γ2) : [0, T ]→ X1 ×X2 is a path in X, then

len(γ) ≥
√

(len(γ1))2 + (len(γ2))2 , (5.3)

with equality if γ1 and γ2 are traversed at the same relative rate, i.e. if

len(γ1) len
(
γ2|[0,t]

)
= len(γ2) len

(
γ1|[0,t]

)
, 0 < t < T . (5.4)

Proof: The triangle inequality for the Euclidean plane immediately gives the
following inequality for non-negative numbers ai, bi, 1 ≤ i ≤ n:

n∑
i=1

√
a2i + b2i ≥

√√√√( n∑
i=1

ai

)2

+

(
n∑
i=1

bi

)2

.

By taking ai := d(γ1(ti), γ1(ti−1)) and bi := d(γ2(ti), γ2(ti−1)) in the above
inequality, where the numbers 0 = t0 ≤ t1 ≤ · · · ≤ tn = T form a partition of
[0, T ], we deduce (5.3).

If γ1 and γ2 are traversed at the same relative rate, then the vectors (ai, bi)
defined in the last paragraph are positive scalar multiples of each other, so we get
equality in the planar triangle inequality, which upon taking a supremum over
all such partitions gives equality in (5.3).

If the paths are not traversed at the same relative rate then we split γ into
two subpaths γi = (γi1, γ

i
2), i = 1, 2, where γ1 = γ|[0,T1], γ

2 = γ|[T1,T ], and
0 < T1 < T is such that the equation in (5.4) fails for t = T1. Letting ai = len(γi1)
and bi = len(γi2), it follows that (a1, b1) and (a2, b2) are not scalar multiples of a
single vector, and so

len(γ) =

2∑
i=1

len(γi) ≥
2∑
i=1

√
a2i + b2i >

√√√√( 2∑
i=1

ai

)2

+

(
2∑
i=1

bi

)2

=
√

(len(γ1))2 + (len(γ2))2 .

We are now ready to prove Theorem 5.1. Note that it follows implicitly from
the following proof that the “if” clause for equality in Lemma 5.2 is actually an
“if and only if”.

Proof: [Proof of Theorem 5.1] Suppose a = (a1, a2), b = (b1, b2) are a pair of
points in X. Suppose γi is a rectifiable path from ai to bi of length Li, i = 1, 2.
By reparametrization if necessary, we assume that γi is of constant speed, and
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then define γ = (γ1, γ2). It follows from Lemma 5.2 that len(γ) =
√
L2
1 + L2

2.
Since Xi is a length space, we can choose γi so that Li is arbitrarily close to
d(ai, bi), i = 1, 2, and it then follows that len(γ) is arbitrarily close to d(a, b).
Thus X is a length space.

Letting a, b ∈ X be as above, it follows from Lemma 5.2 that if γ = (γ1, γ2)
is a h-short path from a to b, then γi is a h′-short path from ai to bi, i = 1, 2,
where h′ > 0 depends only on d(a1, b1), d(a2, b2), and h, with h′ → 0 as h → 0
(for fixed a, b).

Suppose now that we are given points x, y, z ∈ X, a h-short triangle T :=
Th(x, y, z), and points u, v ∈ X on different sides of T . By projecting this data
onto Xi, i = 1, 2, it follows that we get an associated h′-short triangle Ti :=
Th(xi, yi, zi), and points ui, vi ∈ Xi on different sides of Ti; here h′ > 0 depends
only on the distances between pairs of vertices of Ti, i = 1, 2, and on h, with
h′ → 0 as h → 0 (for fixed x, y, z). We assume that the positive number h, and
hence h′, is sufficiently small to guarantee that the C-rough CAT(0) condition
holds for T1 and T2.

Suppose now that for each side γ = (γ1, γ2) of T , the projected paths γ1 and
γ2 are traversed at the same relative rate. Let u be on the side [x, y]h and let v be
on the side [y, z]h. The C-rough CAT(0) condition applied to the projected pairs
of points gives d(ui, vi) ≤ |ūi − v̄i| + C, where ūi, v̄i are comparison points for
ui, vi on the comparison triangle Ti = T (x̄i, ȳi, z̄i), i = 1, 2. It follows readily that
if we define T = T (x̄, ȳ, z̄), where x̄ = (x̄1, x̄2), etc., if we define ū, v̄ analogously,
and if we identify the plane in R4 containing T with M2

0 , then T is a comparison
triangle for T ; ū, v̄ are comparison points for u, v; and the triangle inequality
implies that d(u, v) ≤ |u− v|+

√
2C, as required.

In view of the above, the theorem follows readily once we prove the following
claim: if we fix a pair of points x = (x1, x2), y = (y1, y2) ∈ X with d(xi, yi) > 0
for i = 1, 2, and we pick a h-short path γ = (γ1, γ2) : [0, 1] → X from x to y,
then γ1 and γ2 are traversed at almost the same relative rate. More precisely, if
we define L(t; γi) := len(γi|[0,t])/ len(γi), then for all numbers 0 ≤ t ≤ 1 and for
our fixed pair of points x, y, we claim that there exists ε dependent only on h
such that |L(t; γ1)− L(t; γ2)| < ε, and such that ε→ 0 as h→ 0.

Let F be the set of all rectifiable paths from x to y, let D := d(x, y), let
Di := d(xi, yi), and let D(t, γi) = d(γi(t), xi), for i = 1, 2. Since γ is h-short,
and so γi are h′-short, with h′ → 0 as h → 0, the claim follows if we prove that
(D(t; γ1), D(t; γ2)) stays uniformly close to the main diagonal of the rectangle
[0, D1]× [0, D2].

Given γ = (γ1, γ2) ∈ F , we define a path λγ : [0, 1] → [0, 1]2 by the equation
λγ(t) = (D(t; γ1), D(t; γ2)). Note that λγ is a path from (0, 0) to (D1, D2) and
we need to show that this path remains close to the diagonal (with a tolerance
tending to 0 as h→ 0).

Given p := (p1, p2) ∈ [0, 1]2, let Fp be the set of all paths ν ∈ F such that
λν(t) = p, for some point t ∈ [0, 1]. We denote the associated value of t as
t(p, ν); note that t(p, ν) may not be unique, but any non-uniqueness corresponds
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only to a harmless choice of a point in a subinterval of [0, 1] on which ν remains
stationary so, for the sake of having a fixed definition, we choose t(p, ν) to be
the smallest number with the above defining property. Cutting ν ∈ Fp into two
subpaths ν1, ν2 at the point t(p, ν), we see that

len(ν) = len(ν1) + len(ν2) ≥ |(p1, p2)|+ (D1 − p1, D2 − p2)| =: f(p) .

Note that the function f : [0, D1]× [0, D2]→ R defined above is continuous and it
takes on its minimum value |(D1, D2)| = D only when p lies on the main diagonal
of its rectangular domain. By compactness it readily follows that the minimum
value outside any given neighborhood of the main diagonal is strictly larger than
D. The claim follows.

Since the class of rCAT(0) spaces are preserved by taking l2-products, it is
easy to produce an rCAT(0) space that is neither CAT(0) nor Gromov hyperbolic
by taking the l2-product of a Gromov hyperbolic space that is not CAT(0) and a
CAT(0) space that is not Gromov hyperbolic. The simplest such example is the
product of the unit circle and the Euclidean plane.

We now consider spaces obtained by gluing a pair of length spaces (Xi, di),
i = 1, 2, along isometric closed subspaces Si ⊂ Xi, i = 1, 2 where fi : S → Si are
isometries from some fixed metric space (S, dS) to (Si, di|Si

). This means that
we are creating a new space X = X1 tS X2 as the quotient of the disjoint union
of X1 and X2 under the identification of f1(s) with f2(s) for each s ∈ S. The
glued metric d on X is defined by the equations d|Xi×Xi

= di, i = 1, 2, and

d(x1, x2) = inf
s∈S

(d1(x1, f1(s)) + d2(f2(s), x2)) , x1 ∈ X1, x2 ∈ X2 .

Then d is also a length metric [5, I.5.24]. For simplicity of notation, we identify
X1, X2, and S with the naturally associated subspaces of X, so that S = X1∩X2.

Theorem 5.5. If X = X1 tS X2 where (S, dS) is of diameter D < ∞ and
(Xi, di) is a C-rCAT(0) space for i = 1, 2, then X is a C ′-rCAT(0) space for
some C ′ = C ′(C,D).

A comparable gluing result for CAT(0) spaces X1 and X2 requires that Si be
convex in Xi (meaning that it contains all geodesics in Xi between every pair of
points in Si) and complete for i = 1, 2, but the boundedness of S is dropped.
The conclusion is then that X is CAT(0); see [5, II.11.1].

Before proving Theorem 5.5, we need some elementary lemmas concerning
planar geometry. The first is a “small perturbation” result.

Lemma 5.6. Suppose T (x, y, z) and T (x′, y′, z′) are triangles in the Euclidean
plane, and that two of | |x−z|−|x′−z′| |, | |y−z|−|y′−z′| |, and | |x−y|−|x′−y′| |
equals zero, with the third being at most h := 1/(1 + (|x− y| ∨ |x− z| ∨ |y− z|)2).
Suppose also that u ∈ [x, z], u′ ∈ [x′, z′], v ∈ [x, y], and v′ ∈ [x′, y′], with |x−u| =
|x′ − u′| and |x− v| = |x′ − v′|. Then |u′ − v| ≤ |u− v|+ 2.
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Proof: We write a = |x− z|, a′ = |x′ − z′|, b = |y− z|, b′ = |y′ − z′|, c = |x− y|,
c′ = |x′− y′|, d = |z− v|, d′ = |z′− v′|, e = |u− v|, and e′ = |u′− v′|, l = |x− u|.
Since two of the three sidelengths are preserved, we may assume by symmetry
between y and z that c = c′. Define the numbers s, t, t′ ∈ [0, 1] by t = l/a,
t′ = l/a′, and s = |x−v|/c. We assume that a∨a′ ≥ 1, since otherwise the result
follows trivially from the triangle inequality. Thus

|t− t′| ≤ hl/aa′ ≤ h/(a ∨ a′) ≤ h .

Using (3.7), we get the following four equations, which we use implicitly in
the rest of the proof:

d2 = (1− s)a2 + sb2 − s(1− s)c2 ,
(d′)2 = (1− s)(a′)2 + s(b′)2 − s(1− s)c2 ,
e2 = (1− t)(sc)2 + td2 − t(1− t)a2 ,

(e′)2 = (1− t′)(sc)2 + t′(d′)2 − t′(1− t′)(a′)2 .

Note that t(1− t)a2 = l(a− l) and similarly t′(1− t′)(a′)2 = l(a′− l). It is readily
verified that h ≤ 1/(1 ∨ a′ ∨ b′ ∨ c′)2, and trivially h ≤ 1/(1 ∨ a ∨ b ∨ c)2.

If a = a′ and b′ ≤ b, then it follows from the above equations that d′ ≤ d
and e′ ≤ e, so we are done. If a = a′ and b < b′ ≤ b + h, we see that (d′)2 =
d2 + 2sbh+ sh2 ≤ d2 + 3, and hence that (e′) ≤ e2 + 3. Thus e′ ≤ e+

√
3 in this

case.
Suppose instead that b = b′ and a− h ≤ a′ ≤ a. Then (d′)2 ≤ d2, and so

(e′)2 ≤ e2 + (t′ − t)d2 + l(a− a′) ≤ e2 + 2 .

In the last inequality, we used the estimate (t′ − t)d2 ≤ 1, which in turn follows
from the earlier estimate |t′− t| ≤ h and the fact that d ≤ a∨ b. We deduce that
e′ ≤ e+

√
2 in this case.

Lastly, suppose that b = b′ and a < a′ ≤ a+h. Then (d′)2 ≤ d2 +(1−s)(ah+
h2) ≤ d2 + 3, and as in the previous case

(e′)2 ≤ e2 + 3t′ + (t− t′)(sc)2 ≤ e2 + 4 .

Thus e′ ≤ e+ 2 in this case.

We now state a lemma that we call the Zipper Lemma because in the important
case δx = δy > 0, we get one triangle from another by “zipping up” two sides
(shortening them by the same amount).

Lemma 5.7. Suppose x, y, z, z′, u, u′ are points in the Euclidean plane and write
δx := |x − z| − |x − z′| and δy := |y − z| − |y − z′|. Suppose also that u ∈ [x, z],
u′ ∈ [x, z′], and |x− u| = |x− u′|. Then
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(a) If v ∈ [x, y] and |δx| ≤ δy then |u′ − v| ≤ |u− v|.

(b) If v ∈ [y, z] and v′ ∈ [y, z′] with |y − v| = |y − v′| and δx = δy ≥ 0, then
|u′ − v′| ≤ |u− v|.

Proof: By the Cosine Rule applied to the triangles T (x, u′, v) and T (x, z′, y), it
is clear that the distance from u′ to v ∈ [x, y] decreases as we move z′ directly
towards y while keeping x, y and z fixed, since both are associated with the
(common) angle at x in both triangles decreasing. Thus it suffices to prove that
the angle at x in the triangle T (x, z′, y) is smaller than the angle at x in the
triangle T (x, z, y) in the special cases δy = δx > 0 and δy = −δx > 0.

We first prove (a) for δx = δy > 0. Without loss of generality, we assume that
x, y are given in Cartesian coordinates by (c, 0) and (−c, 0), respectively. Let

2a := | |z − x| − |z − y| | = | |z′ − x| − |z′ − y| | ,

so that a ≤ c. The lemma is clear if either a = c or a = 0, so we assume that
0 < a < c and write b =

√
c2 − a2 and e = c/a. Thus z and z′ both lie on one

branch of the hyperbola
w2

1

a2
− w2

2

b2
= 1 ,

where (w1, w2) are the Cartesian coordinates of a point w on this hyperbola.
We assume for now that z, z′ lie on the right branch of this hyperbola, i.e. that

|z−x| < |z−y|. Let r = |z−x| and let θ be the angle at x in the triangle T (x, y, z).
Then z = (z1, z2) satisfies the equation

r2 = (z1 − ae)2 + z22 = (z1 − ae)2 + (e2 − 1)(z21 − a2) = (ez1 − a)2 ,

and so r = ez1 − a, since we are on the right branch of the hyperbola. Also
z1 = r cos(π − θ) + ae = ae− r cos θ, and so r = e(ae− r cos θ)− a. Rearranging
this equation we get

r =
a(e2 − 1)

1 + e cos θ
.

It is clear from this equation that the angle θ decreases as r decreases, so we are
done.

If instead |z−x| > |z−y|, the analysis is similar except that now r = a− ez1,
and so we instead get

r =
a(e2 − 1)

−1 + e cos θ
,

and again it is clear that θ decreases as r decreases.
We now prove (a) for δy = −δx > 0. We could do this in a similar manner

to the proof for δy = δx above, but using an ellipse rather than a hyperbola.
However we will instead give a slightly shorter calculus proof. Let a := |x − z|,
b := |y− z|, and c := |x− y|, and let θ be the angle at x in the triangle T (x, y, z).
The desired conclusion is obvious in the degenerate cases b = a+ c and c = a+ b,
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and the degenerate case a = b + c cannot arise by the triangle inequality since
|x − z′| > a and |y − z′| < b. We may therefore assume that we are in the non-
degenerate case with sin θ > 0. For the rest of this paragraph prime superscripts
indicate derivatives with respect to a parameter t. Specifically, holding c fixed,
and considering a = a(t), b = b(t), and θ = θ(t) to be functions of t with a′(t) = 1
and b′(t) = −1, it suffices to show that θ′(t) < 0 for all 0 ≤ t < δy. The fact
that the triangle is non-degenerate at t = 0 implies that it is non-degenerate
for all 0 ≤ t < δy, and so sin θ(t) > 0 on [0, δy). Differentiating the equation
b2 = a2 + c2 − 2ac cos θ, we get

−b(t) = a(t)− c(t) cos θ(t) + a(t)c(t) sin θ(t)θ′(t) ,

and so

θ′(t) =
−a(t)− b(t) + c(t) cos θ(t)

a(t)c(t) sin θ(t)
.

The desired inequality θ′(t) < 0 follows easily for all 0 ≤ t < δx.
Finally we prove (b). Let a := |x − z|, b := |y − z|, and c := |x − y| as

before, and also let p := |z − u|, q := |z − v|, and e := |u − v|. Without loss of
generality, we assume that a, b, p, q > 0, p < a, and q < b. Again we use calculus
and reserve prime superscripts for t-derivatives below. Holding c fixed and taking
a′(t) = b′(t) = p′(t) = q′(t) = −1, with θ(t) being the angle at z for T (x, y, z), it
suffices to show that e′(t) < 0. Differentiating the Cosine Rule for the triangles
T (x, y, z) and T (u, v, z) with respect to t, we get

0 = (a(t) + b(t))(cos θ(t)− 1) + (a(t)b(t) sin θ(t))θ′(t) ,

e(t)e′(t) = (p(t) + q(t))(cos θ(t)− 1) + (p(t)q(t) sin θ(t))θ′(t) .

Combining these equations, we get

e(t)e′(t)

p(t)q(t)
=

(
1

a(t)
+

1

b(t)
− 1

p(t)
− 1

q(t)

)
(1− cos θ(t)) ,

and so it is clear that e′(t) ≤ 0, as required.

We now state a useful perturbation of the previous lemma. The proof is easy:
for (a), first apply Lemma 5.6 to lengthen |z−x| by h, and then apply Lemma 5.7,
and for (b), apply Lemma 5.6 twice and then Lemma 5.7.

Lemma 5.8. Suppose x, y, z, z′, u, u′ are points in the Euclidean plane and write
δx := |x−z|−|x−z′| and δy := |y−z|−|y−z′|. Suppose also that u ∈ [x, z], u′ ∈
[x, z′], and |x−u| = |x−u′| and we write and h := 1/(1+(|x−y|∨|x−z|∨|y−z|)2).
Then

(a) If v ∈ [x, y] and |δx| ≤ δy + h then |u′ − v| ≤ |u− v|+ 2.
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(b) If v ∈ [y, z] and v′ ∈ [y, z′] with |y− v| = |y− v′| and δx + h1 = δy + h2 ≥ 0
for some 0 ≤ h1, h2 ≤ h, then |u′ − v′| ≤ |u− v|+ 4.

Proof: [Proof of Theorem 5.5] Let d be the glued metric on X. We first claim
that any h-short path γ : [0, L] → X for a pair of points x, y ∈ X1 lies within a
distance D/2 + 2h of a h-short path for this pair in X1.

Suppose without loss of generality that γ is parametrized by arclength and
not contained in X1. The only parts of γ that do not fully lie in X1 consist of
disjoint subpaths γi, i ∈ I, where I is a countable index set and the endpoints of
every γi lie in S.

The distance between these endpoints is the same in either X1 or X2, and
X1 is a length space, so we can replace these subpaths by subpaths in X1 whose
combined length is at most the same as the combined length of the γi subpaths, as
long as least one γi is non-geodesic, an assumption that we add for the moment.
We therefore get a new h-short path γ′ : [0, L′]→ X1 from x to y, parametrized by
arclength, with L′ ≤ L. By the triangle inequality, d(γ(t), γ′(t)) ≤ (D+h)/2 +h
for all 0 ≤ t ≤ L′. This establishes the claim under the assumption that at least
one of the subpaths γi is non-geodesic.

The argument when every γi is geodesic is similar except that we may not be
able to replace them by geodesic subpaths in X1. As long as L < d(x, y) + h, we
can choose the replacement subpaths so short as to guarantee that the resulting
path γ′ : [0, L′] → X1 from x to y is h-short, is parametrized by arclength, and
again satisfies d(γ(t), γ′(t)) ≤ (D + h)/2 + h for all 0 ≤ t ≤ L.

The only remaining problem is when L = d(x, y) + h. It follows that the
parts of γ other than the γi subpaths cannot all be geodesic, so we can take a
non-geodesic subpath of γ that is disjoint from every γi and has length at most
h/2. We replace this non-geodesic subpath by a shorter subpath that remains
within X1. We now have a path of length less than d(x, y)+h and we can proceed
as in the last paragraph to construct a h-short path γ′ : [0, L′] → X1 from x to
y, parametrized by arclength, satisfying d(γ(t), γ′(t)) ≤ (D + h)/2 + h+ h/2 for
all 0 ≤ t ≤ L′. This finishes the proof of the claim.

In view of the above claim and Corollary 4.4, it suffices to prove the rCAT(0)
condition for all h-short triangles with given vertices x, y, z, where h ≤ H for
some H = H(x, y, z) > 0, and considering only h-short sides within Xi for any
pair of vertices that both lie in Xi, i = 1, 2.

Thus it suffices to prove an rCAT(0) condition for a h-short triangle with
vertices x, y, z, where x, y ∈ X1 and z ∈ X2, and the path in the triangle from
x to y is γxy : [0, Lxy] → X1, with similar notation for the other two sides. We
assume that h ≤ H, where H := 1/3(1 + (d(x, y) ∨ d(x, z) ∨ d(y, z))2).

We may further assume that both γ1xz := γxz|[0,Mxz ] and γ1yz := γyz|[0,Myz ] lie
in X1, and both γ2xz := γxz|[Mxz,Lxz ] and γ2yz := γyz|[Myz,Lyz ] lie in X2, for some
choice of numbers Mxz and Myz. Of these four subpaths, we call the two with
superscript “1” the initial segments of the associated side of the triangle, and the
other two the final segments of the associated side. We write sx := γxz(Mxz) and
sy := γyz(Myz).
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Symmetry reduces the task of verifying the rCAT(0) condition for points u, v
to the following five cases:

(a) u lies on the initial segment of γxz, and v lies on γxy.

(b) u lies on the final segment of γxz, and v lies on γxy.

(c) u, v lie on final segments of γxz and γyz, respectively.

(d) u, v lie on initial segments of γxz and γyz, respectively.

(e) u lies on the final segment of γxz, and v lies on the initial segment of γyz.

In Case (a), we first apply the Zipper Lemma Lemma 5.8(a), with all data as
in that lemma except for the Lemma’s z′ and u′: we take z′ = sy and the u′ is
taken to be a point on a h-short path λ from x to sy whose distance to x is d(x, u),
if such a point exists (which we assume for now). Now d(u, v) ≤ d(u, u′)+d(u′, v),
and by the rCAT(0) condition for the triangle with vertices x, sx, sy, we see that
d(u, u′) ≤ D + C. Combining the rCAT(0) conditions for the triangles with
vertices x, y, sy with the Zipper Lemma and this estimate for d(u, u′), we deduce
the desired rCAT(0) inequality for the pair u, v in the triangle with vertices x, y, z.

If there is no point u′ on λ with d(u′, x) = d(u, x), then take u′ = sy, and so
d(u′, x) < d(u, x). As in the last paragraph, we get an rCAT(0) inequality for the
pair u′′, v, where u′′ is a point on γxy such that d(u′′, x) = d(u′, x). But since

d(u′, x) ≥ d(sx, x)−D ≥ d(u, x)−D − h ,

and so d(u′, u) ≤ D+ 2h. Since this quantity is bounded, the rCAT(0) condition
for u′′, v implies an rCAT(0) condition for u, v (with a parameter C that is larger
by 2D + 4h).

We next consider Case (b). First construct a “comparison quadrilateral” Q̄
with vertices x̄, ȳ, s̄y, s̄x for the quadrilateral Q with vertices x, y, sy, sx. Theo-
rem 3.18 ensures that we can do this in a certain sense, but we need less than
guaranteed by that: in fact we need only that distances between each of the
four pairs of adjacent pairs of adjacent vertices is preserved (such a “compari-
son quadrilateral” exists for any quadrilateral in any metric space). We form a
new metric space space (G, dG) by gluing a filled Euclidean triangle with sides
of length |s̄x − s̄y| = d(sx, sy), d(y, z) − d(y, sy), and d(x, z) − d(x, sx), to the
Euclidean plane along the line segment from s̄x to s̄y. If we can prove a variant
rCAT(0) condition for the triangle with vertices x, y, z, and u, v as in Case (b)
where we have all the usual inequalities and equations of Definition 3.1, but with
the (geodesic) comparison triangle T in G rather than the Euclidean plane, then
the usual CAT(0) condition follows by combining this variant rCAT(0) condition
with the usual CAT(0) condition for the comparison triangle in G; the fact that
G is CAT(0) follows from the CAT(0) gluing theorem referred to after the state-
ment of Theorem 5.5. Since u is on the final segment of γxz and v ∈ X1, we see
that d(u, v) = d(u, s) + d(s, v) for some s ∈ S, and so d(u, v) is within a distance
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2D of d(u, sx) + d(sx, v). Similarly if ū, v̄ are the comparison points for u, v in
T , then d(ū, v̄) is within a distance 2D of d(ū, s̄x) + d(bsx, v̄). Since d(u, sx) and
d(ū, s̄x) differ by at most h, it follows that the desired variant rCAT(0) condition
for u, v follows from the usual rCAT(0) condition for the pair of points sx, v, as
proven in Case (a) (once we increase the parameter C by 8D + 2h).

Case (c) follows easily from the fact that u, v lie on a h-short triangle in X2

with vertices z, u0, and v0, with d(u0, v0) ≤ D; we leave the details to the reader.
We next handle Case (d). Suppose first that we can find a point w ∈ X1 such

that d(w, sx) ≤ D + h, d(w, sy) ≤ D + h, and

d(z, x)− d(w, x) + h1 = d(z, y)− d(w, y) + h2 ≥ 0 ,

for some 0 ≤ h1, h2 ≤ 3h. We pick h-short paths γxw and γyw from x to w, and
from y to w, respectively, and associated points u′ on γxw and v′ on γyw such that
d(u′, x) = d(u, x) and d(v′, y) = d(v, y) (as for u′′ in Case (a), we let u′ and/or
v′ equal w if one or other of these last equations cannot be satisfied). Applying
Lemma 5.8(b) with 3h playing the role of h in the lemma, it is clear that the
the distance apart of the comparison points for u, v in the comparison triangle
T1 = T (x̄, ȳ, z̄) for the triangle with vertices x, y, z is either larger, or smaller by at
most 4, than the distance apart of the comparison points for u, v in the comparison
triangle T2 = T (x̄, ȳ, w̄) for the triangle with vertices x, y, w, assuming that we
choose the comparison points so that d(u, x) = |ū − x̄|, and similarly preserve
d(u′, x), d(v, y), and d(v′, y). Putting the rCAT(0) condition for the pair u, u′

together with the estimates d(u, u′) ≤ D + h + C and d(v, v′) ≤ D + h + C, we
get an rCAT(0) condition for u, v, as required.

It remains to find a point w with the desired properties. Let λ : [0, L] → X1

be a h-short path from sx to sy, parametrized by arclength. Let w = λ(t) for
some t ∈ [0, L]. Then d(w, sx) ≤ D + h and d(w, sy) ≤ D + h whenever w = λ.
Also let δx := d(x, z)− d(x,w) and δy := d(y, z)− d(y, w).

When t = 0, the h-shortness of γxz implies that

Lxz −Mxz + h ≤ δx + 2h ≤ Lxz −Mxz + 2h ,

and the h-shortness of γxz implies that

−D ≤ −d(sy, w) ≤ h+ d(z, y)− d(z, sy)− d(sy, w) ≤ δy + h ≤ Lxz −Mxz + h .

In particular, δx + 2h ≥ δy. Similarly when t = L we get that δy + 2h ≥ δx. It
follows that for some t ∈ [0, L] we have δx + h1 = δy + h2, for some non-negative
numbers h1, h2 with h1 + h2 = 3h. (In fact we get δx + h1 = δy + h2 for some
non-negative numbers h1, h2 satisfying h1 + h2 ≤ 2h and h1h2 = 0, but it suits
us to increase both numbers so that h1 + h2 = 3h.)

Note that

L ≤ d(sx, sy) + h ≤ d(sx, z) + d(z, sy) + h ≤ Lxz −Mxz + Lyz −Myz + h ,
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and so

d(w, x))+d(w, y) ≤ (Mxz+t)+(L−t+Myz) ≤ Lxz+Lyz+h ≤ d(z, x)+d(z, y)+3h .

It follows that δx + δy + 3h ≥ 0, and so δx + h1 = δy + h2 ≥ 0, as required.
Case (e) follows from Case (d) in the same way as Case (b) follows from Case

(a).

It is often useful to glue an infinite number of spaces together, sometimes along
a single point or set, or sometimes at different places along some base space. The
following general gluing theorem says that for either of these types of gluing of
C-rCAT(0) spaces along uniformly bounded gluing sets, we get another rCAT(0)
space.

Theorem 5.9. Suppose we have a collection of C-rCAT(0) spaces Xi, i ∈ I,
where I is some index set containing 0 as an element. We write I∗ = I \ {0}.
Suppose further that in each Xi, i ∈ I∗, we have a closed subspace Si that is glued
isometrically to a closed subspace Ti of X0. Suppose further that Si (and Ti) is
of diameter at most D <∞, i ∈ I∗. Then the resulting space X is a C ′-rCAT(0)
space for some C ′ = C ′(C,D).

Proof: [Sketch of proof] Using a similar argument to the proof of the claim at
the beginning of the proof of Theorem 5.5, we see that for sufficiently small h, a
h-short path between x ∈ Xi and j ∈ Xj , i, j ∈ I, is within a bounded Hausdorff
distance of a h-short path path that only passes through Xi, Xj , and X0. Thus
we may restrict ourselves to examining h-short triangles whose sides are of this
type, and an rCAT(0) condition for any pair of points on such a triangle with
vertices in Xi, Xj , and Xk follows from at most three appeals to Theorem 5.5
(to glue Xi, Xj , and Xk to X0).

As mentioned earlier, if we glue a pair of CAT(0) spaces along a pair of
isometric convex subspaces, we get a CAT(0) space. It is tempting therefore to
suspect that if we glue a pair of rCAT(0) spaces along a pair of isometric convex
subspaces (or even isometric “roughly convex” subspaces, whatever this should
mean), we get an rCAT(0) space. However the following example shows that this
is false.

Example 5.10. First let X1, X2 be two disjoint isometric copies of the closed
Euclidean upper half-plane X := {(x, y) : y ≥ 0}. We write Ii : X → Xi, i = 1, 2,
for the natural (isometric) identification maps. We will isometrically glue the
y = 0 edges of X1 and X2 to the edges given by opposite sides of a “warped
ladder” Y .

To construct Y , we begin with its two “sides” consisting of two disjoint copies
of R: for i = 1, 2, let νi : R → Y be isometric maps to these sides of Y . Next
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we define the rung Rn, n ∈ Z, of the ladder Y to be a line segment of length
exp(−|n|), with one endpoint glued to ν1(n) and the other to ν2(n). These line
segments Rn are pairwise disjoint, and disjoint from the lines νi(R) except where
glued at their endpoints. We give Y the glued metric dY . Thus adjacent rungs
are always a distance 1 apart but the two sides are warped in the sense that the
distance from ν1(n) to ν2(n) decays exponentially in |n|.

We now isometrically glue together X1, Y , and X2 along their edges to get
the glued space Z = (X1tRY )tRX2. More precisely, for each x ∈ R and i = 1, 2,
we identify Ii(x, o) with νi(x). We denote the glued metric by d. As usual, it is
convenient to consider X1, X2, Y to be subsets of Z.

Rather trivially X1, X2 are CAT(0), and so rCAT(0). Also Y is rCAT(0):
probably the easiest way to see this is to note that Y is roughly isometric to
R and so Gromov hyperbolic. Thus Z is obtained by isometrically gluing three
rCAT(0) spaces along convex subsets and, if the isometric gluing of two rCAT(0)
spaces along a closed convex set were always rCAT(0), then Z would be rCAT(0)
(just apply such a result twice).

However we claim that (Z, d) is not rCAT(0). To see this note first that

dn(y) := d(Ii((0, y)), Ii((n, 0))) =
√
y2 + n2

is independent of i and is an even function of n ∈ Z, and the unique geodesic of
length dn in Z is a line segment in Xi between these points.

Clearly Z is proper, and dn(·) is increasing and unbounded as a function of
|n|, so we readily deduce that there exists a geodesic segment from I1((0, y)) to
I2((0, y)) for all y > 0. Moreover

dn(y)− d0(y) =
√
y2 + n2 − y → 0 (y →∞) .

Fixing n ∈ N and choosing y so large that dn(y) − d0(y) < e−n+1 − e−n, we
ensure that one geodesic segment between I1((0, y)) and I2((0, y)) in Z must
cross Y along a rung RN for some N ≥ n. By symmetry, another geodesic
segment between these two points goes via R−N . Letting n → ∞, we therefore
have a pair of geodesic segments with the same endpoints such that the distance
between their midpoints is greater than 2n, and so can be arbitrarily large. Such
a configuration is incompatible with the rCAT(0) condition.

Finally, we show that there are no interesting examples among the class of
normed real vector spaces. As is well known, such spaces are CAT(0) if and
only if they are inner product spaces [5, II.1.14]. It is straightforward to use the
dilation structure of such spaces to show that they must be CAT(0) if they are
rCAT(0); we give the details for completeness.

Proposition 5.11. Suppose (V, ‖ · ‖) is a normed real vector space with distance
d(x, y) = ‖x− y‖. Then V is rCAT(0) if and only if it is CAT(0).
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Proof: Suppose (V, d) is C-rCAT(0). Being a normed vector space, V is certainly
a geodesic space. We wish to prove the CAT(0) condition for a fixed but arbitrary
geodesic triangle T with vertices x, y, z ∈ V . The translation invariance of d
allows us to assume without loss of generality that x = 0. Let T be a comparison
triangle in M2

0 with vertex at 0 corresponding to x = 0, let u, v be points on
different sides of T and let ū, v̄ be the respective comparison points on T .

We now exploit the dilation invariance of V . Given a geodesic γ : [0, L]→ V
from a ∈ V to b ∈ V , we get a dilated geodesic Rγ : [0, L]→ V from Ra to Rb for
any given R > 0 by defining (Rγ)(t) = Rγ(t). If we dilate our geodesic triangle T
in this manner, we get a geodesic triangle which we call RT , and it is clear that
the similarly dilated Euclidean triangle RT is a comparison triangle for RT , and
that Rū,Rv̄ are respective comparison points for Ru,Rv ∈ RT . Furthermore if
d(u, v) = |ū− v̄|+ε for some ε > 0, then d(Ru,Rv) = |Rū−Rv̄|+Rε, so by taking
R > C/ε we contradict the rCAT(0) inequality. Thus the rCAT(0) condition can
only hold if the CAT(0) condition holds.

Remark 5.12. It follows from the above theorem that we cannot change the
l2-product in Theorem 5.1 to an lp-product for any p 6= 2, since certainly the
lp-product of two Euclidean lines is rCAT(0) only when p = 2.
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