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Uniqueness for ultrametric analytic functions
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Abstract

Let K be a complete algebraically closed p-adic field of characteristic
zero and let f, g be two meromorphic functions inside an open disc of K.
We first study polynomials of uniqueness for such functions. Suppose now
f, g are entire functions on K. Let a ∈ K\{0} and n, k ∈ N, with k ≥ 2 and
let α be a small entire function with respect to f and g. If fn(f−a)kf ′ and
gn(g − a)kg′ share α, counting multiplicities, with n ≥ max{6 − k, k + 1}
then f = g. If α ∈ K

∗ and if n ≥ max{5− k, k + 1} then f = g.
Let f, g be unbounded analytic functions inside an open disk of K and

let α be a small function analytic inside in the same disk. If fn(f − a)2f ′

and gn(g − a)2g′ share α counting multiplicities, with n ≥ 4, then f = g.
If fn(f − a)f ′ and gn(g − a)g′ share α counting multiplicities, with n ≥ 5,
then f = g.
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Unicity, Distribution of values.
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1 Introduction and Main Results

Let K be an algebraically closed field of characteristic zero, complete for an
ultrametric absolute value denoted by | · |.

We denote by A(K) the K-algebra of entire functions in K, by M(K) the field
of meromorphic functions in K, i.e. the field of fractions of A(K) and by K(x)
the field of rational functions.

Let a ∈ K and R ∈]0,+∞[. We denote by d(a,R−) the “open” disc {x ∈
K : |x − a| < R}. Similarly, we denote by A(d(a,R−)) the set of analytic func-

tions in d(a,R−), i.e. the K-algebra of power series

∞
∑

n=0

an(x− a)n converging in
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d(a,R−) and by M(d(a,R−)) the field of meromorphic functions inside d(a,R−),
i.e. the field of fractions of A(d(a,R−)). Moreover, we denote by Ab(d(a,R

−))
the K - subalgebra of A(d(a,R−)) consisting of the bounded analytic functions
in d(a,R−), i.e. which satisfy sup

n∈N

|an|R
n < +∞ and by Mb(d(a,R

−)) the field

of fractions of Ab(d(a,R
−)). Finally, we denote by Au(d(a,R

−)) the set of un-
bounded analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R

−)). Simi-
larly, we set Mu(d(a,R

−)) = M(d(a,R−)) \Mb(d(a,R
−)).

Functions of uniqueness for entire functions and for meromorphic functions
were studied in several papers. Particularly, a sufficient condition for an analytic
function P to be a function of uniqueness for analytic or meromorphic functions
depends on the number of zeros ak of the derivative such that P (ak) 6= P (aj) ∀j 6=
k that we can call Fujimoto’s points. Indeed, this condition was first introduced
by H. Fujimoto [9] and was particularly studied for p-adic meromorphic functions
in [5] and [10]. In general, one has a conclusions for p-adic entire function when
P admits at least 2 Fujimoto’s points ak. For functions in Au(d(a,R

−)), 3 Fu-
jimoto’s points are necessary to have a general conclusion. And for function in
Mu(d(a,R

−)), 4 Fujimoto’s points are necesasry. On the other hand, polynomi-
als with only 2 Fujimoto’s points where used in several papers to study problems
of uniqueness in C and in K.

Here, we first aim at studying polynomials of a particular type, with only 2
Fujimoto’s points where we can get conclusions for functions in bothAu(d(a,R

−))
and Mu(d(a,R

−)). We must first recall previous results.
Next, we will study the problem of value sharing a small function α for func-

tions of the form fn(f−a)kf ′, i.e. the derivative of P (f) where P is a polynomial
with 2 Fujimoto’s points, again. That study follows a previous one in C [13].

The following Theorem A may be seen as Statement (b) when l = 2 in [19].
More recently, N. T. Hoa in [11] and separately A. Escassut in [5] gave the
following theorem concerning polynomials of uniqueness for entire functions and
meromorphic functions.

Definition. A polynomial P (x) is called a polynomial of uniqueness for a family
of functions F , if for any f, g ∈ F such that P (f) = P (g) we have f = g.

Theorem A. Let P ∈ K[x] be such that P ′ has exactly two distinct zeros γ1 of
order c1 and γ2 of order c2. Then P is a polynomial of uniqueness for A(K).
Moreover, if min{c1, c2} ≥ 2, then P is a polynomial of uniqueness for M(K).

Example: Let n, k ∈ N and a ∈ K \ {0}. Let P ∈ K[x] be defined as

P (x) =
1

n+ k + 1
xn+k+1 −

(

k

1

)

a

n+ k
xn+k + . . .+

+

(

k

k − 1

)

(−a)k−1

n+ 2
xn+2 +

(−a)k

n+ 1
xn+1. (1)
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Clearly

P ′(x) = xn+k −

(

k

1

)

axn+k−1 + . . .+

(

k

k − 1

)

(−a)k−1xn+1 + (−a)kxn,

this is, P ′(x) = xn(x− a)k.

Remark 1. When min{c1, c2} = 2, this kind of polynomials was introduced by
Frank and Reinders in order to find the smallest URSCM ever found, for com-
plex entire or meromorphic functions [8]. By [4] and [19], it is known that if
min{c1, c2} = 1, then P is not a polynomial of uniqueness for M(K). Indeed,
up to an affine change of variable, P (y) may be reduced to yn − yn−1 + c with

c ∈ K. Now, let h ∈ Mu(d(0, R
−)) and let us define f and g as: g =

hn−1 − 1

hn − 1
and f = hg. Then we can check that the polynomial P satisfies P (f) = P (g).

Now, we do not know whether Theorem Amight be extended toMu(d(0, R
−)).

Indeed, the proof of Theorem A requires the use of algebraic curves theory on
a p-adic field, particularly Picard-Berkovich Theory [1] that does no apply to
functions defined in M(d(0, R−)). However, here we can state two theorems con-
cerning Au(d(0, R

−)) and Mu(d(0, R
−)) whose proof uses some methods similar

to those of Theorem A in [3].

Theorem 1. Let P ∈ K[x] of degree n ≥ 3 be such that P ′ only has two distinct
zeros, one of them being of order 1. Then P is a polynomial of uniqueness for
Au(d(0, R

−)).

Theorem 2. Let P ∈ K[x] of degree n ≥ 6 be such that P ′ only has two distinct
zeros, one of them being of order 2. Then P is a polynomial of uniqueness for
Mu(d(0, R

−)).

Example. Let a ∈ K \ {0} and n ∈ N. Thanks to the previous theorems we can
deduce that

(i) P (x) =
1

n+ 2
xn+2 −

a

n+ 1
xn+1 is a polynomial of uniqueness

for Au(d(0, R
−)).

(ii) P (x) =
1

n+ 3
xn+3−

2a

n+ 2
xn+2+

a2

n+ 1
xn+1 is a polynomial of uniqueness

for Mu(d(0, R
−)) whenever n ≥ 3.

In [17], we studied the uniqueness of a pair (f, g) of meromorphic functions in
K

(

resp. unbounded meromorphic functions in d(0, R−)
)

such that fnf ′ and gng′

share one value counting multiplicities (C.M.) or ignoring multiplicities (I.M.).
We proved, for example, that if fnf ′ and gng′ share one value C.M. with n ≥ 11,
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then f = dg with dn+1 = 1 whenever f, g ∈ M(K). And if fnf ′ and gng′

share one value I.M. with n ≥ 9, then f = dg with dn+1 = 1 whenever f, g ∈
Au(d(0, R

−)). Here we will study the following problem:
Let f, g ∈ A(K) be transcendental

(

resp. f, g ∈ Au(d(0, R
−))

)

and let α be

a small analytic function with respect to f and g in K
(

resp. in d(0, R−)
)

such
that fn(f − a)kf ′ and gn(g − a)kg′ share α, counting multiplicities, with n ∈ N

∗

and a ∈ K \ {0}. Can we conclude that f = g ?
This kind of questions was studied in complex analysis in many papers con-

cerning meromorphic functions or entire functions in C with various conclusions,
see, for example, [13], [14], [15] and [16]. Actually, such a problem is deeply linked
to the problem of polynomials of uniqueness.

Now, in order to define small functions, we have to briefly recall the definitions
of the classical Nevanlinna theory in the field K and a few specific properties of
ultrametric analytic or meromorphic functions.

Let log be the real logarithm function of base > 1 and let f ∈ M(K)
(

resp.

f ∈ M(d(0, R−))
)

having no zero and no pole at 0. Let r ∈]0,+∞[
(

resp.

r ∈]0, R[
)

and let γ ∈ d(0, r). If f has a zero of order n at γ, we put ωγ(f) = n.
If f has a pole of order n at γ, we put ωγ(f) = −n and finally, if f(γ) 6= 0,∞,
we put ωγ(f) = 0

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting
multiplicities, i.e. we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|).

Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r),
ignoring multiplicities, and set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

(log r − log |γ|).

In the same way, we set N(r, f) = Z
(

r,
1

f

) (

resp. N(r, f) = Z
(

r,
1

f

))

to

denote the counting function of poles of f in d(0, r), counting multiplicities (resp.
ignoring multiplicities).

For f ∈ M(d(0, R−)) having no zero and no pole at 0, the Nevanlinna function
is defined by T (r, f) = max

{

Z(r, f) + log |f(0)|, N(r, f)
}

.

In this paper we will show two results using the p-adic Nevanlinna theory
together with a few specific properties of ultrametric analytic functions or ultra-
metric meromorphic functions. We begin introducing the following definitions.

In order to go on, we must recall the definition of a small function with respect
to a meromorphic function and some pertinent properties.

Definition. Let f ∈ M(K)
(

resp. Let f ∈ M(d(0, R−))
)

such that f(0) 6= 0,∞.

A function α ∈ M(K)
(

resp. α ∈ M(d(0, R−))
)

having no zero and no pole
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at 0 is called a small function with respect to f , if it satisfies lim
r→+∞

T (r, α)

T (r, f)
=

0
(

resp. lim
r→R−

T (r, α)

T (r, f)
= 0

)

.

If 0 is a zero or a pole of f or α, we can make a change of variable such that
the new origin is not a zero or a pole for both f and α. Thus it is easily seen
that the last relation do not really depend on the origin.

We denote by Mf (K)
(

resp. Mf (d(0, R
−))

)

the set of small meromorphic

functions with respect to f in K
(

resp. in d(0, R−)
)

.

Remark 2. Thanks to classical properties of the Nevanlinna function T (r, f) with
respect to the operations in a field of meromorphic functions, such as T (r, f +
g) ≤ T (r, f) + T (r, g) and T (r, fg) ≤ T (r, f) + T (r, g), for f, g ∈ M(K) and
r > 0, we easily proved in [7] that Mf (K)

(

resp. Mf (d(0, R
−))

)

is a subfield of

M(K)
(

resp. M(d(0, R−))
)

and M(K)
(

resp. M(d(0, R))
)

is a transcendental

extension of Mf (K)
(

resp. of Mf (d(0, R
−))

)

.

Now, we can give some sufficient conditions to get a positive answer to our
question. Let us remember the following definition.

Definition. Let f, g, α ∈ M(K)
(

resp. f, g, α ∈ M(d(0, R−))
)

. We say that f

and g share the function α C.M., if f −α and g−α have the same zeros with the
same multiplicities in K

(

resp. in d(0, R−)
)

.

Theorem 3. Let f, g ∈ A(K) be transcendental such that fn(f − a)kf ′ and
gn(g − a)kg′ share the function α ∈ Af (K) ∩ Ag(K) C.M. when n, k ∈ N

and a ∈ K \ {0}. If n ≥ max{6− k, k+1}, then f = g. Moreover, if α ∈ K \ {0}
and n ≥ max{5− k, k + 1}, then f = g.

Theorem 4. Let f, g ∈ Au(d(0, R
−)), let α ∈ Af (d(0, R

−)) ∩ Ag(d(0, R
−)) and

let a ∈ K \ {0}. If fn(f − a)2f ′ and gn(g − a)2g′ share the function α C.M. and
n ≥ 4, then f = g. Moreover, if fn(f − a)f ′ and gn(g − a)g′ share the function
α C.M. and n ≥ 5, then again f = g.

2 Basic Results and Proofs of Theorems

We have to recall the ultrametric Nevanlinna second main Theorem in a basic
form which we will frequently use.

Let f ∈ M(K)
(

resp. f ∈ M(d(0, R−))
)

satisfy f ′(0) 6= 0,∞. Let S be a

finite subset of K and r ∈]0,+∞[
(

resp. r ∈]0, R[
)

. We denote by ZS
0 (r, f

′) the
counting function of zeros of f ′ in d(0, r) which are not zeros of any f − s for
s ∈ S. This is, if (γn)n∈N is the finite or infinite sequence of zeros of f ′ in d(0, r)
that are not zeros of f − s for s ∈ S, with multiplicy order qn respectively, we set

ZS
0 (r, f

′) =
∑

|γn|≤r

qn(log r − log |γn|).
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Theorem N.
(

[2], [6]
)

Let a1, ..., an ∈ K with n ≥ 2 an entire, and let f ∈ M(K)
(resp. let f ∈ M(d(0, R−))). Let S = {a1, ..., an}. Assume that none of f, f ′

and f − aj with 1 ≤ j ≤ n, equals 0 or ∞ at the origin. Then, for r > 0
(

resp.

for r ∈]0, R[
)

, we have

(n− 1)T (r, f) ≤

n
∑

j=1

Z(r, f − aj) +N(r, f)− ZS
0 (r, f

′)− log r +O(1).

A special Nevanlinna Theorem is known deriving from the Nevanlinna Theorem

on 3 small functions [18]:

Lemma 1. Let f ∈ M(K) \ {0} non identically zero
(

resp. f ∈ M(d(0, R−))
)

and let α ∈ Mf (K)
(

resp. α ∈ Mf (d(0, R
−))

)

have no zero and no pole at 0.

Then for r > 0
(

resp. for r ∈]0, R[
)

, we have T (r, f) ≤ Z(r, f) + Z(r, f − α) +

N(r, f) + Sf (r).

Lemma 2 is well known (see for instance Theorem 2.4.5 [6])

Lemma 2. Let f ∈ M(K) not constant
(

resp. f ∈ Mu(d(0, R
−))

)

. There exists
at most one value b ∈ K such that f(x) 6= b ∀x ∈ K (resp. f(x) 6= b ∀x ∈
d(0, R−)).

In order to prove Theorem 2, we will use the following lemma that is known
in complex analysis [8] and that, in general, is valid for an algebraically closed
field of characteristic zero such as K.

Lemma 3. Let n ≥ 3 be an integer and let

Q(X) = (n− 1)2(Xn − 1)(Xn−2 − 1)− n(n− 2)(Xn−1 − 1)2

be a polynomial with coefficient in K of degree 2n − 2. Then 1 is a zero of Q of
multiplicity order 4 and all the other zeros of Q are simple.

Proof of Theorems 1 and 2. Let f, g ∈ Mu(d(0, R
−)) be such that P (f) =

P (g). Let f = hg.
Suppose first we are in the hypothesis of Theorem 1. By Remark 1, we have

g =
hn−1 − 1

hn − 1
. Each pole of hn−1− 1 is a zero of g of same order, hence hn−1− 1

belongs to Mu(d(0, R
−)) and so does h. Consequently, by Lemma 2, h avoids at

most one value. Now we know that the n-th roots of unity and the n−1-th roots

of unity have no common element but 1. Consequently, since n ≥ 3,
hn−1 − 1

hn − 1
admits at least one pole, a contradiction because g is analytic in d(0, R−).
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We now place ourselves in the hypothesis of Theorem 2. From the hypothesis
P (f) = P (g) we can derive

(n− 1)(n− 2)(hn − 1)g2 − 2an(n− 2)(hn−1 − 1)g+

+a2n(n− 1)(hn−2 − 1) = 0. (2)

Suppose that h is not a constant. Let r ∈]0, R[. Considering the previous
expression we can easily deduce that h is unbounded in d(0, R−), because if h is
bounded we have

T
(

r, (n− 1)(n− 2)(hn − 1)g2
)

≥ 2T (r, g) +O(1)

and T
(

r, 2an(n − 2)(hn−1 − 1)g − a2n(n − 1)(hn−2 − 1)
)

≤ T (r, g) + O(1), a
contradiction to (2).

On the other hand, by simple calculations, we can write (2) as

(

(n− 1)(n− 2)(hn − 1)g − an(n− 2)(hn−1 − 1)
)2

= −a2n(n− 2)Q(h) (3)

where Q(h) = (n− 1)2(hn − 1)(hn−2 − 1)− n(n− 2)(hn−1 − 1)2 is a polynomial
of degree 2n− 2. Since n ≥ 6, by Lemma 3, we deduce that Q(h) is of the form
(h− 1)4(h− γ1)(h− γ2)...(h− γ2n−6), where every γi ∈ K\{0, 1}

(

i = 1, ..., 2n−

6
)

, is a simple zero of Q. Now, from (3), every zero of h− γi
(

i = 1, ..., 2n− 6
)

,
has multiplicity at least 2. Assume, without loss of generality, that 0 is neither a
zero nor a pole of h− γi

(

i = 1, ..., 2n− 6
)

. Then,

2n−6
∑

i=1

Z(r, h− γi) ≤
1

2

2n−6
∑

i=1

Z(r, h− γi) ≤ (n− 3)T (r, h) +O(1).

Thereby, applying Theorem N to h at the points γi
(

i = 1, ..., 2n − 6
)

, and

considering that N(r, h) ≤ T (r, h), we obtain

(2n− 7)T (r, h) ≤

2n−6
∑

i=1

Z(r, h− γi) +N(r, h) +O(1)

≤ (n− 2)T (r, h) +O(1).

Since T (r, h) is unbounded in ]0, R[, we have a contradiction whenever n ≥ 6.
Hence, h is a constant. Therefore, by (3), we have hn − 1 = 0 and hn−1 − 1 = 0.
It follows that h = 1 and hence f = g. �

Let us recall this classical lemma [12]:
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Lemma 4. Let f ∈ M(K) and αi ∈ Mf (K)
(

resp. f ∈ M(d(0, R−)) and

αi ∈ Mf (d(0, R
−))

) (

i = 1, ..., n
)

, be such that f(0) 6= 0,∞ and αi(0) 6= 0,∞

(

i = 1, ..., n
)

. If P (X) =

n
∑

i=0

αiX
i ∈ Mf (K)[X]

(

resp. P (X) =

n
∑

i=0

αiX
i ∈

Mf (d(0, R
−))[X]

)

, then for r > 0
(

resp. r ∈]0, R[
)

, we have T (r, P (f)) =

nT (r, f) + Sf (r).

Moreover, if αi ∈ K
(

i = 1, ..., n
)

, then for r > 0
(

resp. r ∈]0, R[
)

, we have
T (r, P (f)) = nT (r, f) +O(1).

Lemma 5. Let f, g ∈ M(K) be transcendental
(

resp. f, g ∈ Mu(d(0, R
−))

)

,

a ∈ K \ {0} and n, k ∈ N with n ≥ k + 2
(

resp. n ≥ k + 3
)

. Let

F =
1

n+ k + 1
fn+k+1 +

(

k

1

)

(−a)

n+ k
fn+k + . . .+

+

(

k

k − 1

)

(−a)k−1

n+ 2
fn+2 +

(−a)k

n+ 1
fn+1

and

G =
1

n+ k + 1
gn+k+1 +

(

k

1

)

(−a)

n+ k
gn+k + . . .+

+

(

k

k − 1

)

(−a)k−1

n+ 2
gn+2 +

(−a)k

n+ 1
gn+1.

If F ′ = G′, then F = G.

Proof: Note that F ≡ fn+1P (f) with P ∈ K[x] and deg(P ) = k. Let r > 0
(

resp. r ∈]0, R[
)

. We have Z(r, F ) ≤ Z(r, f) +Z(r, P (f)) ≤ T (r, f) + T (r, P (f))

and N(r, F ) = N(r, f) ≤ T (r, f). Moreover, since F ′ = G′, F −G is a contant c.

Suppose c 6= 0. Then Z(r, F − c) = Z(r,G) ≤ Z(r, g) + Z(r, P (g)) ≤
T (r, g) + T (r, P (g)). But, by Lemma 4, we have T (r, P (f)) = k T (r, f) + O(1)
and T (r, P (g)) = k T (r, g)+O(1). Consequently Z(r, F ) ≤ (k+1)T (r, f)+O(1)
and Z(r, F − c) ≤ (k + 1)T (r, g) + O(1). Moreover, by the same Lemma 4, we
have T (r, F ) = (n+ k + 1)T (r, f) +O(1).

Considering the previous expressions and applying Theorem N to F , we obtain

(n+ k + 1)T (r, f) ≤ T (r, F ) ≤ Z(r, F ) + Z(r, F − c) +N(r, F )− log r +O(1)

≤ (k + 2)T (r, f) + (k + 1)T (r, g)− log r +O(1),
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this is,

(n− 1)T (r, f) ≤ (k + 1)T (r, g)− log r +O(1). (4)

Since G satisfies the same hypothesis as F , similarly we have

(n− 1)T (r, g) ≤ (k + 1)T (r, f)− log r +O(1). (5)

Thus, adding (4) and (5), we have

(n− 1)
[

T (r, f) + T (r, g)
]

≤ (k + 1)
[

T (r, f) + T (r, g)
]

− 2 log r +O(1),

a contradiction when r → +∞ and n ≥ k + 2
(

resp. when r → R− and n >

k+2
)

because f and g are transcendental meromorphic functions in K
(

resp. are

unbounded meromorphic functions in d(0, R−)
)

. Consequently, c = 0.

Now, when analytic functions are concerned, since N(r, F ) = N(r,G) = 0, we
derive Lemma 6.

Lemma 6. Let f, g ∈ A(K) be transcendental
(

resp. Let f, g ∈ Au(d(0, R
−))

)

,

a ∈ K \ {0} and n, k ∈ N with n ≥ k + 1
(

resp. n ≥ k + 2
)

. Let

F =
1

n+ k + 1
fn+k+1 +

(

k

1

)

(−a)

n+ k
fn+k + . . .+

+

(

k

k − 1

)

(−a)k−1

n+ 2
fn+2 +

(−a)k

n+ 1
fn+1

and

G =
1

n+ k + 1
gn+k+1 +

(

k

1

)

(−a)

n+ k
gn+k + . . .+

+

(

k

k − 1

)

(−a)k−1

n+ 2
gn+2 +

(−a)k

n+ 1
gn+1.

If F ′ = G′, then F = G.

Lemma 7 is immediate:

Lemma 7. Let f ∈ M(K) and α ∈ Mf (K)
(

resp. Let f ∈ M(d(0, R−)) and

α ∈ Mf (d(0, R
−))

)

. Then α is a small function with respect to f ′(f − a)kfn.
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Proof Indeed, on one hand, we have N(r, f ′(f − a)kfn) > N(r, f) and on the
other hand, each zero of f is not a pole of f ′ hence Z(r, f ′(f − a)kfn) ≥ Z(r, f).

Proof of Theorem 3. Since f, g ∈ A(K) and fn(f − a)kf ′ and gn(g − a)kg′

share α C.M., then
fn(f − a)kf ′ − α

gn(g − a)kg′ − α
is a meromorphic function having no zeros

and no poles in K, hence it is a constant c in K \ {0}.

Put F = fn(f − a)kf ′ and suppose c 6= 1. Then,

F = c
(

gn(g − a)kg′
)

+ α(1− c). (6)

Let r > 0. Since α(1− c) ∈ Af (K), by Lemma 7, we deduce that α(1− c) ∈
AF (K). So, applying Lemma 1 to F , we obtain

T (r, F ) ≤ Z(r, F ) + Z
(

r, F − α(1− c)
)

+ SF (r) (7)

= Z(r, fn) + Z
(

r, (f − a)k
)

+ Z(r, f ′) + Z(r, gn) + Z(r, g − a)+

+ Z(r, g′) + Sf (r)

≤ T (r, f) + T (r, f − a) + T (r, f ′) + 3T (r, g) + Sf (r).

But f is entire. So, T (r, F ) = nT (r, f) + kT (r, f − a) + T (r, f ′) + O(1). Thus,
considering the above equality in Inequality (7), we have

(n+ k − 2)T (r, f) ≤ 3T (r, g) + Sf (r). (8)

Similarly, since g satisfies the same hypothesis as f , we can deduce that

(n+ k − 2)T (r, g) ≤ 3T (r, f) + Sg(r). (9)

Thereby, adding (8) and (9), we obtain

(n+ k − 2)
[

T (r, f) + T (r, g)
]

≤ 3
[

T (r, f) + T (r, g)
]

+ Sf (r) + Sg(r),

a contradiction whenever n + k ≥ 6 and f, g ∈ A(K) are transcendental. Thus
c = 1. Consequently, by (6) and Lemma 6, we have

1

n+ k + 1
f
n+k+1 +

(

k

1

)

(−a)

n+ k
f
n+k + . . .+

(−a)k

n+ 1
f
n+1 =

=
1

n+ k + 1
g
n+k+1 +

(

k

1

)

(−a)

n+ k
g
n+k + . . .+

(−a)k

n+ 1
g
n+1

,

because n ≥ max{6− k, k + 1}. Thus, the conclusion comes from Theorem 1.

In the case when α ∈ K \ {0} and f, g ∈ A(K) are transcendental, we define
F as in (6) and we suppose c ∈ K \ {0, 1}. Since α(1 − c) ∈ K \ {0}, we apply
Theorem N to F . So, with a similar process to this in (7), we obtain

(n+ k − 2)T (r, f) ≤ 3T (r, g)− log r +O(1).
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And, considering the function g, we obtain

(n+ k − 2)T (r, g) ≤ 3T (r, f)− log r +O(1).

Therefore, adding the two last inequalities, we have

(n+ k − 2)
[

T (r, f) + T (r, g)
]

≤ 3
[

T (r, f) + T (r, g)
]

− 2 log r +O(1),

a contradiction whenever n ≥ 5 − k and r → +∞. Thus, the conclusion is
obtained by considering n ≥ max{5−k, k+1} in Lemma 6 and Theorem 1. �

Proof of Theorem 4. Since f, g ∈ A(d(0, R−)) and fn(f−a)kf ′ and gn(g−a)kg′

share α C.M., then
fn(f − a)kf ′ − α

gn(g − a)kg′ − α
= u(x) is a meromorphic function that has

no zeros and no poles in d(0, R−) hence, u(x) belongs to Mb(d(0, R
−)).

Suppose u 6= 1. Then,

fn(f − a)kf ′ = u
(

gn(g − a)kg′
)

+ α(1− u). (10)

Let r ∈]0, R[. By Lemma 7, α(1 − u) is a small function with respect to
fn(f − a)kf ′. Applying Lemma 1 to fn(f − a)kf ′, we have

T (r, fn(f − a)kf ′) ≤ Z(r, fn(f − a)kf ′) + Z
(

r, fn(f − a)kf ′ − α(1− u)
)

+ SF (r)
(11)

≤ T (r, f) + T (r, f − a) + T (r, f ′) + 3T (r, g) + Sf (r).

Since f and g are analytic functions, we have T
(

r, fn(f − a)kf ′
)

= nT (r, f) +
kT (r, f − a) + T (r, f ′) +O(1).

Therefore, for k = 1, Inequality (11) is reduced to

(n− 1)T (r, f) ≤ 3T (r, g) + Sf (r) (12)

and, for k = 2, is reduced to

nT (r, f) ≤ 3T (r, g) + Sf (r). (13)

Since f and g satisfies the same hypothesis, for k = 1, we have again

(n− 1)T (r, g) ≤ 3T (r, f) + Sg(r) (14)

and, for k = 2,

nT (r, g) ≤ 3T (r, f) + Sg(r). (15)

Thereby, adding (12) and (14), we obtain

(n− 1)
[

T (r, f) + T (r, g)
]

≤ 3
[

T (r, f) + T (r, g)
]

+ Sf (r) + Sg(r),
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and, adding (13) and (15), we have

n
[

T (r, f) + T (r, g)
]

≤ 3
[

T (r, f) + T (r, g)
]

+ Sf (r) + Sg(r).

So, for k = 1, we have a contradiction when n ≥ 5 and r → +∞. And, for
k = 2, we have a contradiction when n ≥ 4 and r → +∞. Consequently
u = 1 and so, from (10), we have fn(f − a)kf ′ = gn(g − a)kg′ . By Lemma

6, we have
1

n+ 2
fn+2 +

a

n+ 1
fn+1 =

1

n+ 2
gn+2 +

a

n+ 1
gn+1 when k = 1 and

1

n+ 3
fn+3 +

2a

n+ 2
fn+2 +

a2

n+ 1
fn+1 =

1

n+ 3
gn+3 +

2a

n+ 2
gn+2 +

a2

n+ 1
gn+1

when k = 2. Therefore, if k = 1 or k = 2, we can conclude that f = g thanks to
Theorem 1 or thanks to Theorem 2. �
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