On star partition dimension of the generalized gear graph

by
Ruxandra Marinescu-Ghemeci and Ioan Tomescu
Dedicated to the memory of Laurențiu Panaitopol (1940-2008)
on the occasion of his 70th anniversary

Abstract

For a connected graph G and any two vertices u and v in G, let $d(u, v)$ denote the distance between u and v. For a subset S of $V(G)$, the distance between a vertex v and S is $d(v, S)=\min \{d(v, x) \mid x \in S\}$. For an ordered k-partition of $V(G) \Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ and a vertex v, the representation of v with respect to Π is the k-vector $r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots d\left(v, S_{k}\right)\right)$. Π is a resolving partition for G if the k-vectors $r(v \mid \Pi), v \in V(G)$ are distinct. The minimum k for which there exists a resolving k-partition of $V(G)$ is the partition dimension of G, denoted by $\operatorname{pd}(G) . \Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a star resolving k-partition for G if it is a resolving partition and each subgraph induced by $S_{i}, 1 \leq i \leq k$, is a star. The minimum k for which there exists a star resolving k-partition of $V(G)$ is the star partition dimension of G, denoted by $\operatorname{spd}(G)$.

Let $J_{k, n}$ be the graph obtained from the wheel $W_{k n}$ by keeping spokes with step k, for $k \geq 2$ and $n \geq 2$. In this paper the star partition dimension for this family of graphs is determined.

Key Words: Distance, resolving partition, star resolving partition, partition dimension, star partition dimension, gear graph.
2010 Mathematics Subject Classification: Primary 05C12; Secondary 05C35.

1 Introduction

As described in [1] and [5], dividing the vertex set of a graph into classes according to some prescribed rule is a fundamental process in graph theory. Perhaps the best known example of this process is graph coloring. In [2], the vertices of a connected graph are represented by other criterion, namely through partitions of
vertex set and distances between each vertex and the subsets in the partition. Thus a new concept was introduced - resolving partition for a graph.

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For any two vertices u and v in G, let $d(u, v)$ be the distance between u and v. For a subset S of $V(G)$ and a vertex v of G, the distance $d(v, S)$ between v and S is defined as $d(v, S)=\min \{d(v, x) \mid x \in S\}$.

For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ and a vertex v of G, the representation of v with respect to Π is the k-vector

$$
r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)
$$

Π is called a resolving k-partition for G if the k-vectors $r(v \mid \Pi), v \in V(G)$ are distinct. The minimum k for which there is a resolving k-partition of $V(G)$ is the partition dimension of G and is denoted by $\operatorname{pd}(G)$. A resolving partition of $V(G)$ containing $\operatorname{pd}(G)$ classes is called a minimum resolving partition [2].

In [4] a particular case of resolving partitions - connected resolving partitions was considered. $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is said to be a connected resolving k partition if it is a resolving partition and each subgraph induced by $S_{i}, 1 \leq i \leq k$, is connected in G. The minimum k for which there is a connected resolving k partition of $V(G)$ is the connected partition dimension of G, denoted by $\operatorname{cpd}(G)$.

In this paper we consider a particular case of resolving partitions - star resolving partitions, mentioned in [4] as topic for study. $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is called a star resolving k-partition if it is a resolving partition and each subgraph induced by S_{i} is a star, for $1 \leq i \leq k$. The minimum k for which there is a star resolving k-partition of $V(G)$ is the star partition dimension of G, denoted by $\operatorname{spd}(G)$. A star resolving partition of $V(G)$ containing $\operatorname{spd}(G)$ classes is called a minimum star resolving partition.

If $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is an ordered partition of $V(G)$ and $u_{1}, u_{2}, \ldots, u_{r}$ are r distinct vertices, we say that $u_{1}, u_{2}, \ldots, u_{r}$ are separated by classes $S_{i_{1}}, \ldots, S_{i_{q}}$ of partition Π if the q-vectors

$$
\left(d\left(u_{p}, S_{i_{1}}\right), d\left(u_{p}, S_{i_{2}}\right), \ldots, d\left(u_{p}, S_{i_{q}}\right)\right), \text { for } 1 \leq p \leq r
$$

are distinct.
Let $J_{k, n}$ be the graph obtained from the wheel $W_{k n}$ by keeping spokes with step k, for $k \geq 2$ and $n \geq 2$. This is a generalization of gear graph [3], also known as Jahangir graph $J_{2 n}$ [6]. More precisely, $J_{k, n}$ is obtained from the cycle $C_{k n}$ and a new vertex, as follows. Denote by $0,1, \ldots, k n-1$ the vertices of the cycle $C_{k n}$ and by c the new vertex. We join by edges the vertex c with vertices $0, k, 2 k, \ldots,(n-1) k$ of the cycle $C_{k n}$ (see fig. 1 for $k=3$ and $n=5$).

In the next section we will determine the star partition dimension of $J_{k, n}$.

Figure 1: $J_{3,5}$

2 Star partition dimension of $J_{k, n}$

We call a partition $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{q}\right\}$ of $V\left(J_{k, n}\right)$ a star partition of $J_{k, n}$ if each subgraph induced by $S_{i}, 0 \leq i \leq q$, is a star. Hence, a star resolving partition is a star partition which is also a resolving partition.

Moreover, for a star partition of $J_{k, n} \Pi=\left\{S_{0}, S_{1}, \ldots, S_{q}\right\}$, we assume that classes are numbered such that center c is in S_{0}. We denote by $i_{1}, i_{2}, \ldots, i_{r}$ $\left(0 \leq i_{1}<i_{2}<\ldots<i_{r} \leq k n-1\right)$ the vertices of $S_{0} \cap V\left(C_{k n}\right)$. Hence we have

$$
S_{0}=\left\{c, i_{1}, i_{2}, \ldots, i_{r}\right\}
$$

Every two consecutive vertices from $S_{0} \cap V\left(C_{k n}\right)$ determine sets of vertices which induce paths on $C_{k n}$ called gaps [6]. More precisely, we say that the pair of vertices $\left\{i_{t}, i_{t+1}\right\}, 1 \leq t \leq r-1$ generates the gap $\left\{j \mid i_{t}<j<i_{t+1}\right\}$ and the pair of vertices $\left\{i_{r}, i_{1}\right\}$ generates the gap $\left\{j \mid i_{r}<j \leq k n-1\right\} \cup$ $\left\{j \mid 0 \leq j<i_{1}\right\}$. It is clear that some gaps may be empty.

Theorem 2.1. For any $k \geq 2$ and $n \geq 2$ we have

$$
\operatorname{spd}\left(J_{k, n}\right)= \begin{cases}3, & \text { if } k=2 \text { or } 3 \text { and } n=2 ; \\ \frac{k n}{3}, & \text { if } k \equiv 0(\bmod 3) \text { and }(k, n) \neq(3,2) ; \\ \left\lfloor\frac{k}{3}\right\rfloor n+1, & \text { if } k \equiv 1(\bmod 3) \text { and }(n \geq 3 \text { or } \\ \left\lfloor\frac{k}{3}\right\rfloor n+1+\left\lceil\frac{n}{2}\right\rceil, & \text { if } k \equiv 2(\bmod 3) \text { and }(n \geq 4 \text { or } \\ & (n=2 \operatorname{and} k \geq 5)) ; \\ 3\left\lfloor\frac{k}{3}\right\rfloor+2, & \text { if } k \equiv 2(\bmod 3) \text { and } n=3 .\end{cases}
$$

Proof: We will determine the minimum number of classes for a star partition of $J_{k, n}$, which is not necessarily a resolving partition. Let denote this number by N_{s}.

We consider three cases, in accordance with the residue class modulo 3 to which k belongs.

Case 1: $k \equiv 1(\bmod 3)$.
Let $k=3 p+1, p \geq 1$. It is easy to see that if a class of a star partion of $J_{k, n}$ contains only vertices of the cycle $C_{k n}$, then this class has maximum three elements. It follows that for $n \geq 3$ or ($n=2$ and $p \geq 2$) there exists a unique star partition with minimum number of classes, and that partition is $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{p n}\right\}$ where

$$
\begin{aligned}
& S_{0}=\{c\} \cup\{k t \mid t \in\{0,1,2, \ldots, n-1\}\} \\
& S_{t p+1}=\{k t+1, k t+2, k t+3\}, S_{t p+2}=\{k t+4, k t+5, k t+6\}, \ldots, \\
& S_{(t+1) p}=\{k(t+1)-3, k(t+1)-2, k(t+1)-1\}, \text { for every } 0 \leq t \leq n-1
\end{aligned}
$$

(see fig. 2 for $k=4$ and $n=5$).

Figure 2: $J_{4,5}$
Π has $N_{s}=p n+1=\left\lfloor\frac{k}{3}\right\rfloor n+1$ classes, hence

$$
\operatorname{spd}\left(J_{k, n}\right) \geq N_{s}=\left\lfloor\frac{k}{3}\right\rfloor n+1 .
$$

But we can easily prove that Π is a resolving partition, which implies

$$
\operatorname{spd}\left(J_{k, n}\right)=\left\lfloor\frac{k}{3}\right\rfloor n+1
$$

Indeed, the vertices from class S_{i}, for $1 \leq i \leq p n$ are separated by classes S_{i-1} or S_{i+1}.

For $n \geq 3$, vertices from S_{0} are separated by classes $S_{1}, S_{p+1}, S_{2 p+1}, \ldots$, $S_{(n-1) p+1}$ because we have

$$
\begin{aligned}
& d\left(k t, S_{t p+1}\right)=1, \text { for every } 0 \leq t \leq n-1 \\
& d\left(k t, S_{j p+1}\right)=3, \text { for every } 0 \leq t<j \leq n-2 \\
& d\left(k(n-1), S_{1}\right)=3 \\
& d\left(c, S_{t p+1}\right)=2, \text { for every } 0 \leq t \leq n-1
\end{aligned}
$$

For $n=2$ and $p \geq 2$ (or, equivalently, $k \geq 7$) we have $S_{0}=\{c, 0, k\}$ and vertices $c, 0$ and k are separated by classes S_{1} and $S_{(n-1) p+1}$.

If $n=2$ and $p=1(k=4), k n=8$ there exists a star resolving partition with three classes

$$
\Pi=\{\{c, 0,1,7\},\{2,3,4\},\{5,6\}\}
$$

hence $\operatorname{spd}\left(J_{4,2}\right)=3$.
Case 2: $k \equiv 0(\bmod 3)$.
Let $k=3 p, p \geq 1$. Let $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{N_{s}-1}\right\}$ be a star partition of $J_{k, n}$ with minimum number of classes. We assume $c \in S_{0}$.

If $\left|S_{0}\right|=1$, then the minimum number of classes in a star partition of $J_{k, n}$ is equal to $p n+1$, each of the classes $S_{1}, \ldots, S_{p n}$ containing exactly three consecutive vertices of the cycle $C_{k n}$.

Assume $\left|S_{0}\right|>1$.
If Π induces on $C_{k n}$ exactly one nonempty gap, we have $2 \leq\left|S_{0}\right| \leq 4$, which implies that the minimum number of classes in a star partition of $J_{k, n}$ is at least

$$
1+\left\lceil\frac{k n-3}{3}\right\rceil=\frac{k n}{3}=p n
$$

If Π induces at least 2 nonempty gaps, denote by $w=\left|S_{0}\right|-1$ the number of these gaps.

It is not difficult to see that in this case the number of vertices from any gap is congruent with 2 modulo 3 . It follows that in a minimum star partition of $J_{k, n}$ the vertices of every gap must be partitioned in paths with 3 vertices and one path with 2 vertices, hence the number of classes with 2 vertices is w.

Consequently, the number of classes in a minimum star partition equals

$$
1+\left\lceil\frac{k n-w-2 w}{3}\right\rceil+w=1+\frac{k n}{3} .
$$

We have obtained that $\operatorname{spd}\left(J_{k, n}\right) \geq N_{s} \geq \frac{k n}{3}$.
Moreover, for $n \geq 3$ or ($n=2$ and $p \geq 2$), partition $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{p n-1}\right\}$ having classes $S_{0}=\{c, 0,1, k n-1\}$ and $S_{t}=\{3 t-1,3 t, 3 t+1\}$, for $1 \leq t \leq p n-1$ is a star resolving partition with $p n$ classes of $J_{k, n}$ (see fig. 3 for $k=3$ and $n=5$).

Figure 3: $J_{3,5}$

For $n=2$ and $p=1$ partition $\Pi=\{\{c, 3\},\{0,1,2\},\{4,5\}\}$ is a minimum star resolving partition, so in this case $\operatorname{spd}\left(J_{3,2}\right)=3$.

It follows that $\operatorname{spd}\left(J_{k, n}\right)=\frac{k n}{3}$ for every $(k, n) \neq(3,2)$ and $\operatorname{spd}\left(J_{3,2}\right)=3$. Case 3: $k \equiv 2(\bmod 3)$.
Let $k=3 p+2, p \geq 0$. Let $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{N_{s}-1}\right\}$ be a star partition of $J_{k, n}$ having minimum number of classes such that $c \in S_{0}$.

If the number of nonempty gaps induced on $C_{k n}$ by vertices from $S_{0}-\{c\}$ is at least 2 , then we can suppose that Π has no gap containing exactly $k-1=3 p+1$ vertices, bounded by 2 consecutive vertices of degree $3, k t$ and $k(t+1)$ of $C_{k n}$. Indeed, if Π has such a gap, let W, then Π induces a minimum star partition $\left.\Pi\right|_{W}$ of W having $p+1$ classes (one class being a singleton or 2 classes inducing each a path with 2 vertices and the remaining classes induce each a path with 3 vertices).

We shall delete $k t$ or $k(t+1)$ from S_{0}; suppose that this choice is $k t$, hence we define $S_{0}^{\prime}=S_{0}-\{k t\}$. Then we shall add vertex $k t$ to W and we shall consider a star partition of $W \cup\{k t\}$ into $p+1$ classes.

In this way a new star partition of $J_{k, n}$ having minimum number of classes has been produced with no induced gap of cardinality equal to $3 p+1$.

Consider now a minimum star partition $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{N_{s}-1}\right\}$ of $J_{k, n}$ such that $c \in S_{0}$ having no gap of cardinality $3 p+1$.

If $\left|S_{0}\right|=1$, then the minimum number of classes in a star partition of $J_{k, n}$ is equal to

$$
1+\left\lceil\frac{k n}{3}\right\rceil=1+p n+\left\lceil\frac{2 n}{3}\right\rceil \geq 1+p n+\left\lceil\frac{n}{2}\right\rceil .
$$

If Π induces on $C_{k n}$ exactly one gap, then $2 \leq\left|S_{0}\right| \leq 4$.
It follows that this minimum number of classes in a star partition is at least

$$
1+\left\lceil\frac{k n-3}{3}\right\rceil=1+p n+\left\lceil\frac{2 n-3}{3}\right\rceil
$$

For $n=2$ or $n \geq 4$ we have

$$
1+p n+\left\lceil\frac{2 n-3}{3}\right\rceil \geq 1+p n+\left\lceil\frac{n}{2}\right\rceil
$$

but for $n=3$ we have $\left\lceil\frac{2 n-3}{3}\right\rceil=\left\lceil\frac{n}{2}\right\rceil-1$, so this lower bound becomes

$$
3 p+2=3\left\lfloor\frac{k}{3}\right\rfloor+2=p n+\left\lceil\frac{n}{2}\right\rceil
$$

If Π induces at least 2 nonempty gaps, let $w=\left|S_{0}\right|-1$ denote the number of these gaps. Since every gap has cardinality at least $6 p+3$, one deduces

$$
w \leq\left\lceil\frac{n}{2}\right\rceil
$$

It follows that in this case the minimum number of classes in a star partition equals

$$
1+\left\lceil\frac{k n-w}{3}\right\rceil=1+p n+\left\lceil\frac{2 n-w}{3}\right\rceil \geq 1+p n+\left\lceil\frac{n}{2}\right\rceil
$$

If $n=3$ in all cases we deduced

$$
\operatorname{spd}\left(J_{k, n}\right) \geq N_{s} \geq p n+\left\lceil\frac{n}{2}\right\rceil=3 p+2
$$

But for $n=3$ a resolving star partition with $3 p+2$ classes is built by choosing $S_{0}=\{c, 0,1, k n-1\}$, and other $3 p+1$ classes are obtained by partitioning the vertices $\{2,3, \ldots, k n-2=9 p+4\}$ into classes containing 3 consecutive vertices each: $\{2,3,4\},\{5,6,7\}, \ldots,\{9 p+2,9 p+3,9 p+4\}$ (see fig. 4 for $k=5$ and $n=3)$. Consequently, $\operatorname{spd}\left(J_{k, 3}\right)=3 p+2$.

Figure 4: $J_{5,3}$
If $n \neq 3$ in all cases we have

$$
\operatorname{spd}\left(J_{k, n}\right) \geq N_{s} \geq 1+p n+\left\lceil\frac{n}{2}\right\rceil
$$

We consider a star partition $\Pi=\left\{S_{0}, S_{1}, \ldots, S_{r}\right\}$ defined as follows:

$$
S_{0}=\{c\} \cup\left\{2 k t \left\lvert\, 0 \leq t \leq\left\lceil\frac{n}{2}\right\rceil-1\right.\right\}
$$

and every gap bounded by vertices from S_{0} is divided into $2 p+1$ classes with 3 consecutive vertices each, with at most one exception (for n odd) - the last gap (bounded by $2 k\left(\left\lceil\frac{n}{2}\right\rceil-1\right.$) and 0) has a class with one element (see fig. 5 for $k=5$ and $n=5$). We denote the classes obtained, in the clockwise sense, by S_{1}, \ldots, S_{r}. The number of classes in this partition is

$$
r=1+\left\lceil\frac{k n-\left\lceil\frac{n}{2}\right\rceil}{3}\right\rceil=1+p n+\left\lceil\frac{2 n-\left\lceil\frac{n}{2}\right\rceil}{3}\right\rceil=1+p n+\left\lceil\frac{n}{2}\right\rceil .
$$

Figure 5: $J_{5,5}$
It is easy to see that for $n \geq 3$ or $(n=2$ and $p \geq 1) \Pi$ is a resolving partition, this implying that

$$
\operatorname{spd}\left(J_{k, n}\right)=1+p n+\left\lceil\frac{n}{2}\right\rceil .
$$

For $n=2$ and $p=0(k=2)$ we have $\operatorname{spd}\left(J_{k, n}\right)=3$, a minimum star resolving partition being $\{\{c\},\{0,1\},\{2,3\}\}$.

References

[1] G. Chartrand, T. W. Haynes, M. A. Henning, P. Zhang, Stratification and domination in graphs, Discrete Math. 272 (2003), no. 2-3, 171-185.
[2] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math. 59(2000), 97-108.
[3] J. A. Gallian, A dynamic survery of graph labeling, Elect. J. Combin. 15(2008) DS6.
[4] V. Saenpholphat, P. Zhang, Connected partition dimensions of graphs, Discussiones Mathematicae Graph Theory 22 (2002), 305-323.
[5] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: A survey, Int. J. Math. Math. Sci. 37-40(2004), 1997-2017.
[6] I. Tomescu, I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie 50(98), no.4(2007), 371-376.
Received:4.07.2010

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14,
010014 Bucharest, Romania
E-mail: verman@fmi.unibuc.ro ioan@fmi.unibuc.ro

