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Abstract

It is a classical result, due to F. Tricceri, that the blow-up of a manifold of locally

conformally Kähler (l.c.K. for short) type at some point is again of l.c.K. type. However,

the proof given in [5] is somehow unclear. We give a different argument to prove the result,

using “standard tricks” in algebraic geometry.

Key Words: Blow-up of a manifold at a point, locally conformally Kähler manifold,

Lee form.

2000 Mathematics Subject Classification: Primary 53C55, Secondary 14E99.

1 Introduction

We begin by recalling the basic definitions and facts; details can be found for instance in the book [2].

Definition 1. Let (X, J) be a complex manifold. A hermitian metric g on it is called locally conformally

Kähler, l.c. K. for short, if there exists some open cover U = {Uα}α∈A of X such that for each α ∈ A

there is some smooth function fα defined on Uα such that the metric gα = e−fαg is Kähler.

A complex manifold (X, J) will be called of l.c.K. type if it admits an l.c.K. metric

Letting ω to be the Kähler form associated to g by ω(X, Y ) = g(X, JY ), one can immediately show

that the above definition is equivalent to the existence of a closed 1−form θ such that dω = θ ∧ω. The

form θ is called the Lee form of the metric g. It is almost immediate to see that θ is closed; iy is exact

iff the metric g is global conformally equivalent to a Kähler metric. Usually, by an l.c.K. manifold

one understands a hermitian manifold whose metric is not globally conformally Kähler. In particular,

the first Betti number of an l.c.K. manifold is always strictly positive; more, for compact Vaisman

manifolds (l.c.K. with parallel Lee form) the fundamental group fits into an exact sequence

0 → G → π1(M) → π1(X) → 0

where π1(X) is a fundamental group of a Kähler orbifold, and G a quotient of Z
2 by a subgroup of

rank ≥ 1 (see [4]). Moreover, the l.c.K. class is not stable to small deformations: some Inoue surfaces

do not admit l.c.K. structures and they are complex deformations of other Inoue surfaces with l.c.K.

metrics (see [5], [1]).

However, l.c.K. manifolds share with the Kähler ones the property of being closed under blowing-up

points. To can state the result, let X be a a complex manifold and P ∈ X some fixed point. We denote
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by bX the manifold obtained by blowing-up P, by c : bX → X the blowing-up map and E the exceptional

divisor of π (i.e. E = c−1({P})). The goal is to prove the following

Theorem 1. If the complex manifold X carries an l.c.K. metric, then so does its blow-up bX at any

point.

The result was stated in [5], but the proof in this paper is unclear; it is stated, in the proof of

Prop. 4.2 that a certain metric g̃ (on the complement of the exceptional divisor of the blow-up) agrees

with with some metric g (outside the point which is blow-up). This is definitely confusing, since (in

the notations of [5]) Ũ and U can never be isometric; to see this, pick two different tangent vectors

v1, v2 ∈ Tp(M), γ1, γ2 two curves having those vectors as tangent vectors at the origin, and {P 1
n , P 2

n}n∈N

two sequences of points, approaching P on each of these curves. Clearly, the distance form P 1
n to P 2

n

goes to zero, while the distance between their proper transforms P̃ 1
n , P̃ 2

n on Ũ goes to the distance

between the points representing v1, respectively v2 on the exceptional divisor of the blow-up.

For the sake of completeness, we include in the next section some basic facts about blow-up’s of

points on complex manifolds. Eventually, in the last section we prove the theorem.

2 Basic facts about blow-up’s of points.

This section is entirely standard and is almost an verbatim reproduction of facts from classical texts,

as for instance [3].

Let X be a complex, n−dimensional manifold. Let P ∈ X be a point; choose a holomorphic local

coordinate system (x1, . . . , xn) defined in some open neighborhood U of P such that x1(P ) = · · · =

xn(P ) = 0. Consider the manifold U × P
n−1(C) and assume [y1 : · · · : yn] is some fixed homogenous

coordinate system on P
n−1(C). Let bU ⊂ U × P

n−1(C) be the closed subset defined by the system of

equations xiyj = xjyi, 1 ≤ i < j ≤ n. One can check that bU is actually a submanifold of U × P
n−1(C).

Moreover, the restriction of the projection onto the first factor c : bU → U has the following properties:

the fiber of c above P , c−1({P}), is a submanifold E of bU which is biholomorphic to P
n−1(C) and

the restriction of c at bU \ E defines a biholomorphism between bU \ E and U \ {P}. Using it, we can

glue bU to X along U \ {P}. The resulting manifold will usually be denoted by bX; the map c above

extends obviously to a map - denoted by the same letter- c : bX → X. Notice that on one hand c

is a biholomorphic map between bX \ E and X \ {P} and, on the other hand, c ”contracts” E, i.e.

c(E) = {P} (E is called accordingly the ”exceptional divisor” of c).

Let now y ∈ bX be some point. If y 6∈ E, then the tangent map

c∗,y : Ty( bX) → Tc(y)(X)

is a isomorphism, while if y ∈ E then the rank of this map is one and its kernel consists of those vectors

that are tangent at y to E, i.e. Ker(c∗,y) = Ty(E).

Next, recall that to each closed complex submanifold E of codimension one of some complex mani-

fold X one can associate a holomorphic vector bundle, usually denoted OX(E); see e.g. [3], Chapter 1,

Section 1. If one chooses a hermitian metric h in OX(E) there exists and is unique a linear connection

D in the vector bundle which is also compatible with the complex structure (see e.g. the Lemma on

page 73, [3]). The curvature ΩE of this connection is a closed (1, 1)−form.

We shall next exemplify the computation of the curvature of a metric connection in the special

case we are interested in, namely when E is the exceptional divisor of some blow-up. So let X be a

manifold, P ∈ X, U a coordinate neighborhood of P as in the beginning of the section and bX the

blow-up of X at P. For ε small enough set

U2ε
def
= Q ∈ U | |xi(Q)| < 2e for all i = 1, . . . , n}.
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Let π′ : U × P
n−1(C) → P

n−1(C) be the projection onto the the second factor; then ObU
(E) =

π′∗(OPn−1(C)(−1)). Let ωFS be the Kähler form of the Fubini-Study metric on P
n−1(C); then −ωFS

is the curvature of the canonical connection of the natural metric h in the tautological line bundle

OPn−1(C)(−1). Let h′ def
= π′∗(h) be the induced metric in ObU

(E); then its curvature will be π′∗(−ωFS).

On the other hand, the line bundle O bX
(E) is trivial outside E; fix a nowhere vanishing section σ of it

and let h” be the unique metric making σ into a unitary basis. Let now ̺1, ̺2 be a partition of unity

such that ̺1 ≡ 1 on Uε and ̺1 ≡ 0 outside U2ε and respectively ̺2 ≡ 0 on Uε and ≡ 1 outside U2ε. Let

h = ̺1h
′ +̺2h”; it is a hermitian metric on OX(E). Its curvature will be zero outside U2ε since h = h”

there. In Uε, its curvature will be the pull-back (via π′) of −ωFS , hence it is semi-negative definite;

moreover, its restriction to E will be negative definite on vectors that are tangent along E, since the

restriction of π′ to E is a biholomorphism between E and P
n−1(C)..

3 Proof of the theorem.

Proof. First, let us fix the terminology. We will say that a (1, 1)−form ω on a complex manifold

(M, JM ) is positive (semi-)definite if for any point m ∈ M and any non-zero tangent vector v ∈ TmM

one has ω(v, JMv) > 0 (respectively ≥ 0), in other words if it is the Kähler form of some hermitian

metric on M.

Let now ω be the Kähler form of an l.c.K. metric on X. We see c∗(ω) is a (1, 1)− form on bX which

is positive definite on X \ E and satisfies dc∗(ω) = c∗(θ) ∧ c∗(ω), where θ is the Lee form of the given

l.c.K. metric on X. As E is simply connected we see (e.g. by using Lemma 4.4 in [5]) there exists

an open neighborhood U of E and a smooth function f : bX → R such that ω′ def
= efc∗(ω) satisfies

dω′ = θ′ ∧ ω′ and such that θ′
|U ≡ 0.

On the other hand, we can find a hermitian metric in the holomorphic line bundle O bX
(E) on bX

associated to E such that the curvature ΩE of its canonical connection is negative definite along E

(i.e. ΩE(v, J bX
v) < 0 for every non-vanishing vector v ∈ TP (E) and for every P ∈ E), is negatively

semidefinite at points of E (i.e. ΩE(v, J bX
v) ≤ 0 for any P ∈ E and any v ∈ TP ( bX)) and is zero outside

U (cf. e.g. [3], pp 185-187). Notice that ΩE is closed.

We infer that for some positive integer N the (1, 1)−form h
def
= Nω′ − ΩE is positive definite.

Indeed, this is obvious outside U as ΩE vanishes here and Nω′ is positive definite for any N > 0.

Along E, as both ω′ and −ΩE are positive semidefinite, we have only to check the definiteness of

h. Let y ∈ E be some point and v ∈ Ty( bX). Assume h(v, J bX
v) = 0; since both ω′ and −ΩE are positive

semidefinite, we get ω′(v, J bX
v) = ΩE(v, J bX

v) = 0. But ω′(v, J bX
v) = 0 implies c∗(ω)(v, J bX

v) = 0; so

ω(c∗,y(v), J bX
c∗,y(v)) = 0 hence v ∈ Ker(c∗,y). As Ker(c∗,y) = Ty(E) we get that v ∈ Ty(E); but as

−ΩE(v, J bX
v) = 0 we see that v = 0

To check the assertion on U , it suffices to notice that for each point x in U there exists some nx such

that Nω′ − ΩE is positive definite at x for all N ≥ nx, hence also positive definite on a neighborhood

of x; since U is relatively compact, we can cover it by finitely many such neighborhoods, and take the

maximum of the corresponding n′
xs.

Last, let us see that Nω′ − ΩE is l.c.k. One has

d(Nω
′ − ΩE) = Ndω

′ = θ
′ ∧ Nω

′
.

But θ′ ∧ ΩE = 0 since their supports are disjoint, so we have

d(Nω
′ − ΩE) = θ

′ ∧ Nω
′ − θ

′ ∧ ΩE = θ
′ ∧ (Nω

′ − ΩE).

Acknowledgments. I wish to thank L.Ornea and I. Vaisman for useful discussions; also, I’m especially
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