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Abstract

We prove the existence of local solutions for a class of evolution inclu-
sions defined by a sweeping process and by a set-valued map with nonconvex
values.
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1 Introduction

The existence of local solutions to evolution equations governed by differential
inclusions and by sweeping processes has been the subject of many papers in the
last two decades. Convex sweeping process were introduced by Moreau ([8]). We
refer to [4] and [7] for a complete bibliography on this topic.

The aim of the present note is to establish an existence result for nonconvex
perturbations of the sweeping process associated with a closed convex locally
compact set C of a Hilbert space

z'(t) € =Ne(z(t)) + F(z(t)) + g(t) a.e. ([0,T]), =z(0)= o, (1.1)

where N¢(z(t)) denotes the Clarke normal cone to C at z(t), F(.) is a set-
valued map, upper semicontinuous on H with nonempty compact values satisfying
F(z) C OrV(x), Vx € H with V(.) a ¢-convex function of order two, OrV (.) is
the Fréchet subdifferential of V(.) and ¢(.) is a bounded measurable function on
H.

Our result is an improvement of a previous result of Syam ([9]). In [9] the
set-valued map F(.) is assumed to satisfy F(z) C 8V (z), Yz € H with V(.) a
convex function and AV(.) denotes the subdifferential (in the sense of Convex
Analysis). Since the class of proper convex functions is strictly contained into
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the class of ¢- convex functions of order two, our result generalizes the one in [9].
On the other hand, our result may be interpreted as an extension of a result of
Cardinali, Colombo, Papalini and Tosques ([3]).

The proof of our main result follows the general ideas in [3] and [9].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

Let H be a real Hilbert space with the norm [|.|| and the scalar product (.,.). We
denote by B the closed unit ball in H. For x € H and for a closed subset A C X
we denote by d(z, A) the distance from z to A given by d(z, A) := inf{||ly—z||;y €
A}. By co(A) we denote the convex hull of A and by ¢o(A) we denote the closed
convex hull of A
If K C H isaclosed set and x € K, Clarke’s tangent cone to K at x is defined
by
!
Cx(z) = {v € H; lm 2@+, K)

s—0+,2' oKz S

=0},

where — g denotes the convergence in K. The negative polar of Clarke’s tangent
cone Nk (z) := Ck(z)~ is also called the normal cone to the set K at z € K.

Let Q C H be an open set and let V : @ - R U {+o0} be a function with
domain D(V) = {z € Q; V(z) < +o0}.

Definition 2.1 We call Fréchet subdifferential of V the multifunction 9V :
Q — P(H), defined by

0rV (2) = {a € Hliminf LW V= <SOy=a> o 1 ip00 ¢ oo

yoe lly — =l
and OV (z) = 0 if V(z) = +o0.
Define D(0rV) = {z € H;0rV (z) # 0}.
According to [6] the values of OpV(.) are closed and convex.

Definition 2.2 Let V : Q@ - R U {+0o0} be a lower semicontinuous function.
We say that V is a ¢-conver of order 2 if there exists a continuous map ¢y :
(D(V))? x RZ — R such that for every z,y € D(9rV) and every a € 9rV (z)
we have

V(y) > V(@)+ < a,z—y > —¢v(z,y,V(@), V)1 +[la]*)]|lz - y[I*. (2.1)

In [3], [6] there are several examples and properties of such maps. For example,
according to [3], if K C R? is a closed and bounded domain, whose boundary is
a C? regular Jordan curve, the indicator function of K

0, if zeK
400, otherwise
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is ¢~ convex of order 2.
The next result, due to Syam, will be used in the proof of our main result.

Proposition 2.3 ([9]) Consider C C H a nonempty convez set and xy € C.
Then for any g(.) € L([0,T),H) there exists an unique absolutely continuous
function x4(.);[0,T] — H solution to

z'(t) € =No(z(t)) +g(t)  ae. ([0,T]), z(0) = zo.

Moreover,

< g(t) — 2 (t), 7, (t) >=0 a.e. ([0,T]), (2.2)

llz (D1 < 2[lg@)I]  a-e. ([0,T)). (2.3)

3 The main result
We are now able to prove the main result of this paper.

Theorem 3.1 Let F(.) : H — P(H) be an upper semicontinuous set-valued
map with nonempty compact values such that there exists a locally Lipschitz ¢-
convex of order two function V(.) : H — R with F(z) C 0rV(z), Vx € H.
Consider ¢(.) : [0,00) = H a bounded measurable function and C C H a closed
convez locally compact set.

Then for any xo € C there exist T > 0 and an absolutely continuous function
z(.) : [0,T] = H solution to problem (1.1).

Proof: Let r,L > 0 be such that V(.) is L-Lipschitz on zo + rB. Using the
properties of the Fréchet subdifferential we have that 0rV(z) C LB Vx € rB.
Without loss of generality we assume that [|g(t)|| < 1 V¢ € [0, 00).

We take T' > 0 such that T < 5755y, we denote [ = [0,T] and we define
th = £T,i=0,1,...,2". Consider ¢, the function appearing in Definition 2.2
and

M = {¢w(z1,22,Y1,Y2),%; € xo +1B,y; € [V(xo) — 1,V (zo) +1],i =1,2} <

+00.

Take yo € F(z9) and define f*(.) : [0,t7] = H by fI*(t) = yo. Obviously,
f2() € L2(0, 51, H).

Applying Proposition 2.3 we obtain the existence of an unique absolutely
continuous function z7(.) : [0,t}] — H solution to

a'(t) € —Ne(z(t)) + f'(H) + 9(t) a.e. ([0,47]), z(0) = zo.
Since, for any t € [0,¢7], ||f{*(¢)|| < L we deduce

D) O < 20170 + 9@l <2L+1)  a.e. ([0,]]),
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thus | |27 (8) —zo|| < 27"2(L+1)T < r V¢t € [0,t7], i-e., z7(t) € zg+rB Vt € [0,7].

Repeating the same construction for any k € {2,3,...,2"} we take y; , €
F(zp_,(ty_y)) with 2f_,(t%_,) € 2o + rB and define f(.) : (t}_,,t}] = H
by fi(t) = yi_,. By Proposition 2.3 we consider the unique solution z}(.) :
[th_1, k] = H to

@'(t) € —Ne(x(t) + fi (1) + 9(t)  ace (i1, 18], 2(th_1) = zk_1 (t_1)-

One has () @) < 2||ff ) + g®)|]| < 2(L + 1) and therefore, for any
te [tk 1> ]

ok () — 2k (te_ Dl S2(L+ D)t —th_) <27"2(L+ )T <r
Define

on(t) = tzfl Vt € [ 27177571:); k= 1727 "->2n7 an(T) = T:

2774
t) = ZJUZ(t)X[t;;_l,tk] ), ka WXcez_,1(2),
k=1

where x 4 is the characteristic function of the set A.
Then, for any t € [t}_,,t}],

2 () = zoll < |2 () = 2n ()|l + [[2n(tE 1) = 2a(tf )|l + - +[[2n(E) — zo|

<2K(L+1)27"T < 2".2(L+1)27"T = 2(L+ )T < r.

ie., zn(t) €xo+rBVtel.
Therefore, we have

zp(t) € CN (o +7B) Vtel, (3.1)
T (t) € =No(zn(t) + fo(t) +9(t)  ae. (1), (3:2)
fa(t) € F(zn(0n(t))) COrV (zn(0,(t))) C LB a.e. (I) (3.3)
and, via Proposition 2.3, one has
llzn @[ <2(lg@®[ + [[f®I) <2(L+1) ae. (1), (3.4)
<z (t),z),(t) >=< z,,(t),9(t) + fu(t) > a.e. (I). (3.5)
We prove next
T T (T
| < 0300 > @t <V (@aT) = Vi) + M+ 2255 [ et Ol
0 0

(3.6)
Indeed, using the properties of the function V(.), we have

V(zn(ty)) > V(@a(ty_1)+ < Yr_1,Tk —Th_1 > —
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bu (En(t] 1) (E2), V@t 1)), V(@ (D)) (L + wp 1| P)llal — |
So, )
<., / " ()dt >< V(@ (t) - V(ea )+

n
k—1

th
¢v(mn(t2_1),mn(t2),V(:vn(t}:_l)),V(mn(tZ)))(l+||y,?_1||2)||/tn o, (t)dt] .

1

We deduce .
k
| <0 > e <

n
tk—l

ty
< V@) = Vi) + M0+ 2 [ © a0l
k—1
hence (3.6) holds true.

From (3.4) and Theorem III. 27 in [2] we deduce the existence of a sub-
sequence (again denoted) = (.) which converges weakly L'(I, H) to a function
y(.) € L'(I, H). In particular, lim,,_, o (zo + fot z! (s)ds) = zo + fot y(s)ds Vt € I.

On the other hand, from (3.1) and the fact that the set CN(xzg+rB) is convex
we find that z,,(.) converges uniformly to z(.), where z(t) := x¢ +f(f y(s)ds Vt € I.

Using the continuity of V'(.), (3.4), (3.6) one has

T
lim sup / < ful8), 7 (8) > dt < V((T)) = V(o). (3.7)
n—o00 0

At the same time, from (3.3) and Theorem III. 27 in [2] there exists a sub-
sequence (again denoted) f,(.) which converges weakly L'(I, H) to a function
f() € LY(I, H) and thus, since z,(8,(.)) converges uniformly to z(.) and @oF(.)
is upper semicontinuous with compact convex values, we apply Theorem 1.4.1 in
[1] and we find that

f(t) € coF(x(t)) C OrV(2(t)) a.e.(I). (3.8)
Next we apply Theorem 2.2 in [3] and we deduce from (3.8) that
%(V ox)(t) =< a'(t), f(t) > a-e (I (3.9)
which implies
T
V(@(T)) = V(zo) = / <2 (), f() > dt. (3.10)
0

By a standard argument (e.g. [9]) from (3.2), from the weakly convergence of
z!(.) to z'(.) in L?(I, H), from the weakly convergence of f,,(.) to f(.) in L2(I, H)
and the uniform convergence of z,(.) to z(.) we have

z'(t) € —Nc(z(t)) + f(t) + g(t) a.e. (I). (3.11)
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Using Proposition 2.3 we have
<z'(t),z'(t) >=<2'(t),9(t) + f(t) > a.e. (). (3.12)
On the other hand, from (3.5), (3.7) and (3.10) we have

T T
lim sup/ <z (t),z),(t) > dt = lim <z} (t),g(t) > dt + lim sup
0

n—00 n—o0 Jo n—00

T T T
/ <2 (t), fult) > dt < / <2(8),g(t) > dt +/ <2 (@), f(t) > dt. (3.13)
0 0 0

From (3.12) and (3.13) we infer that

T T
limsup/ < ()7, (8) > dt g/ < 2'(8),2'(t) > dt.
0 0

n—oo

By the weak lower semicontinuity of the norm (e.g. Prop. IIL 30 in [2]) we
deduce that z!,(.) converges to z'(.) in the strong topology of L?(I, H). Therefore
there exists a subsequence (again denoted) z! (.) which converges pointwise a.e.
in I to 2'(.).

It remains to prove that

z'(t) € —=Ne(z(t)) + F(x(t)) + g(t) a.e. (I). (3.14)

Define X (t) := cl{z,(6,(t));n € N}, t € I. Obviously, X (t) C H is compact;
since F'(.) is upper semicontinuous with compact values, we infer that F(X (t)) C
H is compact.

Define Y'(t) := cl{z!,(t) — fn(t) — g(t);n € N}U{0} for almost all t € I
and G(t,z) := —N¢g(z) NY (t), x € H. Then G(t,.) is upper semicontinuous on
C'N (o +rB) with compact values because the set-valued map —N¢(.) has closed
graph and Y (¢) C H is compact (e.g. Theorem 1.1.1 in [1]).

Since for almost all ¢t € I, —z/,(t) + fn(t) + g(t) € —G(¢,z(t)) one has

d(@;, (1), G(t,z(t)) + F(x(t)) + g(t)) < d*(G(t,an(t)) + F(2a(6a(1))) + 9(2),

G(t,z(t)) + F(x(t)) + g(1)) < d*(G(t, zn (1)), G(t, 2(1)) + " (F(2n(0n(1))),

F(z(t))), where d*(A, B) = sup{d(a,B),a € A}.
From the upper semicontinuity of G(,.) anf F(.) it follows

li_>m d(z,(t),G(t,z(t)) + F(z(t)) + g(t)) =0 a.e. (I)
and by the fact that =, (t) converges to z'(t) for almost all t € I we obtain
T'(t) € G(t,z(t)) + F(z(t)) + g(t) a.e. (I),

i.e., (3.14) holds true and the proof is complete. 0
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